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ABSTRACT OF THE DISSERTATION

Numerical Simulation of 3-D Shock Wave Turbulent

Boundary Layer Interaction Using a Two Equation Model

of Turbulence.

by Marianna Gnedin, Ph.D.

Dissertation Director: Professor Doyle D. Knight

A computational study of the crossing shock wave-turbulent boundary layer interaction

is presented. The shock waves are generated by a pair of fins which are mounted

normal to a flat plate and form a converging channel. The focus of the study is to

investigate the ability of the theoretical turbulence model to provide for improvement

in the predictions of adiabatic wall temperature and heat transfer rates during the

interaction of the shock waves with the turbulent boundary layer on the flat plate. Three

configurations with fin angles of 15° x 15°, 7° x 11 ° and 7° x 7 ° have been examined

at Mach 3.9. Experimental data available for comparison includes surface pressure,

heat transfer, adiabatic wall temperature and surface flow visualization. Computations

solve the 3-D Reynolds-averaged compressible Navier-Stokes equations incorporating

the new low Reynolds number correction of Knight to the two equation k-e turbulence

model. The computed surface pressure displays good agreement with experiment. The

computed adiabatic wall temperature exhibits excellent agreement with experiment.

The computed and experimental surface and flowfield flow visualization are in general

agreement. The computed surface heat transfer displays significant disagreement with

experiment for some cases. The flowfield manifests a complex shock wave system, and

a pair of counter-rotating vortices.
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Chapter 1

INTRODUCTION

1.1 Motivation

Shock wave/turbulent boundary layer interactions commonly occur in a wide range

of applications and have strong influence on the characteristics of the flow. The flow

pattern of such type of flows commonly involves strong viscous/inviscid interactions,

separation of the boundary layer caused by shock waves and formation of large vortical

structures.

An important class of flows involving shock wave-turbulent boundary layer interac-

tion is the so called "crossing shock" flow (Fig. 1.1). In this type of flows two inter-

secting shock waves are generated by two sharp fins mounted on a flat plate. These

shock waves interact with the developed boundary layer on the bottom flat plate sur-

face. An adequate understanding of the flow structure caused by the crossing shock

wave/turbulent boundary layer interaction and the ability of the theoretical model to

accurately predict the surface pressure distribution and heat transfer rates on the bot-

tom surface is crucial for the improved design of supersonic aircraft components such

as hypersonic aircraft inlets.

The computed flows generally exhibit good agreement with experimental data for

surface pressure, shock structure, and boundary layer profiles of pitot pressure and

yaw angle. However the accurate prediction of the surface heat transfer and friction

coefficient remains a challenging problem. [19, 24, 40]. While the surface pressure is to

a large extent determined by the inviscid flow structure and therefore is not strongly

affected by the particular choice of the theoretical turbulence model, the derivative

quantities (e.g., surface heat transfer) crucially depend on the turbulence treatment.

Consequently, one of the biggest challenges for accurately computing the crossing shock



F_ : _ Fin

Figure 1.1: Crossing shock ("double fin")

interactions is the modeling of the turbulence quantities of such flows.

The two equation k- e model is the most common choice since it can in principle

better predict complex flowfields than algebraic models and is significantly simpler than

sophisticated higher order closures [55]. A major difficulty in the implementation of the

k-e model is the treatment of the near wall region, where the classical high Re number

k-e model is not valid. Alternative approaches are the so called "wall function boundary

conditions" which are imposed in the wall layer [61], or a "two-layer k - • model",

when a different model is considered in the near wall region (like Rodi model[46]).

However, for many engineering applications, particularly for that involving separation

of the boundary layer or when the transport properties are needed, it is desirable to

enable integration to the boundary. For this purpose wall damping functions can be

introduced which lead to the creation of the so-called "low Reynolds number k-

model". The examples of the low Reynolds number models include those developed

by Jones and Launder [21], Launder and Sharma [33], Lain and Bremhorst [32], Chien

[9] and many others. Significant research efforts have been invested into the validation

of different turbulence models for the computation of flows with shock wave/boundary

layer interaction, in particular, flows with crossing shock interactions (see Table 1.1 for

references).

The low Reynolds number model of Knight utilized in the present numerical study

is described in detail in [6]. The focus of the present research is to investigate the

applicability of this turbulent model to the numerical simulation of the flow involving



the crossing shock wave/boundary layer interaction.

Table 1.1: Crossing Shock Computations

Ref. M_ al a, Model

[44] 3.5 10 ° 10° B-L

[42] 3 110 110 B-L, J-L

[18] 4 15 ° 15° B-L

[43} 8.3 10 ° 10° B-L

[41] 8.3 15 ° 15° B-L, Rod]

[15] 8.3 15° 15° B-L

[2],[3] 8.3 15° 15 ° W,LS,SST,BL

[24] 4 7° 11 ° Chien
11° 15 °

[61] 4 7 ° 11 ° Knight-RSE

Present 4 7 ° 11 ° Knight-k - e
7° 7 °

LEGEND

al left fin angle

a2 right fin angle

M_ freestream Mach number

B-L Baldwin-Lomax model [1]

Chien Chien model [9]

J-L Jones-Launder model [21]

Knight-RSE Knight RSE model [20]

Knight-k - e Knight model [6]

LS Launder- Sharma model [33]

Rod] Rod] model [46]

SST Menter model [36]
W Wilcox k - w model [54]

1.2 Literature Survey

Shock wave-turbulent boundary layer interactions have long been within one of the most

interesting and challenging problems in Computational Fluid Dynamics. Significant

progress has been achieved in understanding and numerical simulation of geometrically

simple flows involving "dimensionless" geometries, such as swept compression corner

[25], [29], [30], [50], [57], or a sharp single fin [13], [14], [23], [26], [27], [28], [45], [57].

The principal features of the shock wave-turbulent boundary layer interaction caused
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by a single fin, such as bifurcation of the main inviscid shock into separation shock and

rear shock, which together with a slip line constitute a quasi-conicai A-shaped wave

structure, are summarized, for example, in [10].

In recent years substantiM research efforts have been concentrated on flows involv-

ing more complex 3-D shock wave/turbulent boundary layer interaction, in particularly,

crossing shock ("double fin") interactions, where two sharp fins are mounted on a bot-

tom fiat plate to form a converging wedge (Fig. 1.1). Understanding of such flows is

important due to applications to high speed inlets. One of the objectives of the inlet

design is to obtain a nearly uniform high total pressure flow at the inlet exit [11], [12].

However, flow separation and complex shock pattern can lead to a substantial loss of

total pressure and nonuniform pressure distribution in the flow to the engine. Conse-

quently, an adequate understanding of the flow physics and the ability to accurately

predict it computationally is very important for improved design of inlets.

Focusing on this relatively simple geometric configuration allows us to separate the

complexity associated with the flow physics and turbulence modeling from that caused

by sophisticated geometry.

A review of theoretical and experimental studies of the crossing shock interactions

can be found in [10], [19],[24]. Available experimental data includes surface pressure,

surface flow visualization and, in some cases, measurements of derivative quantities such

as skin friction and heat transfer rates with 10-15 % accuracy [4], [16], [17], [31], [35],

[56], [62]. Computational studies are very important to improve the understanding of

the flow physics and also as an important tool in the design of supersonic inlets.

Significant research efforts have been concentrated on the development and evalua-

tion of turbulence models capable of providing accurate predictions of the flow struc-

ture, surface loads and heat transfer rates on the bottom flat plate surface. Turbulence

models involved in "double fin" computations range from zero-equation algebraic to

two-equation k - e and k - w and full RSE models. Some of the recent computations

are summarized in the Table (1.1).

The computed surface pressure and boundary layer profiles of total pressure and

yaw angle are relatively insensitive to the choice of the turbulence model, since they



aredeterminedby the inviscidflowstructure[10].Thesequantitiesarepredictedwith

reasonableaccuracyin mostof the computations.Howeverthe computedsurfaceheat

transferstronglydependson theparticular choiceof the turbulencemodelinvolvedin

the computations[19,40].

Thelow Reynoldsnumbermodelof Knight, describedin detail in [6], is developed

on thebasisof threeprinciples,namely,1) the modelemploysthephysicaldissipation

rate_,2) thenormaldistancey is avoided, and 3) the minimum number of modifications

are introduced, as described by Speziale [52]. The modifications include incorporation

of molecular diffusion of k and _, modification of the turbulent eddy viscosity /_T to

provide proper asymptotic behavior near the wall, and modification of the dissipation

of _ to avoid singularities in the _ equation near the wall.

1.3 Present Research

The objective of the present research is to validate the low Reynolds number correction

of Knight to the standard k- e model in application to the numerical simulation of

the flow involving the crossing shock wave/boundary layer interaction. The double

fin configuration utilized in the experiments of Zheltovodov et al. [62] is considered.

Computational results are extensively compared to the experimental results for all cases.

Comparison to the previous computational results of Knight et aL [24] using the Chein's

model and of Zha and Knight using the full Reynolds stress equation model [61] is also

reported for the heat transfer rate.

In the present thesis three configurations were considered with M_ = 3.95, namely,

7 ° x 11 °, 7 ° x 7° and 15 ° x 15 o , corresponding to the experiments of Zheltovodov and

his colleagues [62].

The governing equations and the turbulence model equations are presented in Chap-

ter 2. The numerical algorithm is described in detail in Chapter 3. The CRAFT

Reynolds averaged Navier-Stokes solver is described in detail in [37].

The solver has been modified to incorporate a new low Reynolds number correction

to the two equation k-e model. Chapter 3 also contains details about the boundary



conditionsusedfor the presentnumericalsimulations.Chapter4 discussesthe code

validationstudyfor anumberof casesthroughcomparisonwith analyticalresultsand

2-Dturbulentboundarylayertest computations.Chapter5specifiestheproblemitself.

Chapter6 consistsof theresultsof the presentstudy. Chapter7 providesa summary

of the importantresultsandfuture work.



Chapter 2

GOVERNING EQUATIONS

This chapter describes the 3-D steady Reynolds-Averaged compressible Navier-

Stokes equations and the compressible k-e turbulence model equations written in

conservation form.

2.1 Equations in Cartesian Coordinates

The instantaneous compressible, three-dimensional Navier-Stokes equations in con-

servation form can be expressed in Cartesian coordinates in the following form using

the Einstein summation convention:

• Conservation of Mass (Continuity)

Op O(puk) _ 0 (2.i)
O---t+ Ozk

• Conservation of Momentum

c3(puiuk) Op O(r_k) (2.2)o(p_____)+ _ +
Ot Ozk Oz_ Ozk

• Conservation of Energy

= ___ 0(u_nk)0(pe__A) + 0[uk(pe + v)] OQk + (2.3)
0t 0zk 0zk 0zk

The density, p, static pressure, p, and the absolute temperature, T, obey the equation

of state:

1

p = pRT = P(7 - 1){e - _u_ul} (2.4)

where R is the Universal gas constant, e = c,T + ½ukuk is the total energy per unit

mass, and 7 is the ratio of specific heats.



TheReynoldsAveragedNavier-Stokesequationsare:

Reynolds Averaged Conservation of Mass

op a(#ek) _ 0 (2.5)o--t+ ox_

Reynolds Averaged Conservation of Momentum

O(fi£_) + O(fi£z_fik) O_ O(-pu_'u_ + _ik) (2.6)
0----7-- 0_k - 0x_ + 0xk

* Reynolds Averaged Conservation of Energy

0(_) 0[fi_(fi_ +_)] 0( c oT"u"- Qk)-- Pt _ k___+_ _- +
cOt cO_k Oxk

COzk -pujukuj - 2 pujujuk + ujrJk + ujrjk (2.7)

In equations (2.5) - (2.7), fi is the mean density, fik is the mass-averaged velocity, p

is the mean pressure, and _ is the mass-averaged total energy per unit mass given by:

= c,T + ½fikfik + k (2.8)

where c, is the specific heat at constant volume and/e is the mass-averaged turbulent

kinetic energy defined by:

1 It II

#k = -_puk u_,. (2.9)

The overbar denotes ensemble average, i.e.,

l]--_n

/ = _= _ Z S(") (2.1o)

where f(_) are the individual realizations of the variable f(x, y, z, t). The mass-averaged

variable ] is defined as the mass-weighted ensemble average,

]= _1lira_1E (Pf)(_) (2,11)
o n---*oo n

and the fluctuating variable f" in the mass-averaged expansion is

f' = f - / (2.12)



Alternately, the fluctuating variable f' in the unweighted expansion is

f'= f - /

The molecular viscous stress, "rik, is approximated by assuming a Newtonian fluid

vik = #(_-x/+ _)- 5/_xj bik (2.14)

The dynamic molecular viscosity is assumed to be a function of averaged temperature

and satisfy Sutherland's law:

/_o T + Tref

where Tref is the Sutherland's reference temperature (110.3°K for air), and I_o = #(To).

The molecular Prandtl number, Pr (0.73 for air), and the specific heat at constant

pressure, Cp, are assumed constant.

The molecular heat flux, Qk, is approximated by assuming the Fourier heat law

Pr Ozk (2.16)

where Pr is the molecular Prandtl number and Cp is the specific heat at constant

pressure.

2.2 Low Reynolds Number Correction

The low Reynolds number modification of Knight to the standard k- e model is

described in detail in [6], and its application to adiabatic and isothermal compressible

turbulent boundary layers is also presented in the paper [6].

2.2.1 k-e Turbulence Model Equations

The set of Reynolds-averaged equations (2.5 - 2.7) is not closed due to the presence of

the turbulent stress " "--pU i Uj and turbulent heat flux -Cp_.-T"u"k. Two more transport

equations for k and _ are employed in order to close the system of governing equations.

The turbulence model equations employed in present work are fully described in [6].
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The standard two-equation k-e model of Jones and Launder [21], extended formally

to compressible flow and employing the compressibility correction of Sarkar et al [49]

and Zeman [58], is chosen in [6] for fully turbulent high Reynolds number regions of

the flow. The equation for the turbulence kinetic energy k is taken in [6] to be

O--i-+ Oz, - Pu_'uY-_zj Pe+ -O-_i._-_k-O-_xi] (2.i7)

where the dissipation is a combination of solenoidal g,, and compressible ed components

and [49, 58]

= iv + g_ (2.18)

_ = CkM:_v (2.19)

where Mt is the turbulence Mach number

and Ck is a constant.

2k
M_ - 7Rf (2.20)

The equation for the solenoidal dissipation is

-- - -C_l-=-pu i uj-- - C_2p"ff + (2.21)Ot + Oz_ k 0_ _ _ 0_]

The turbulent stresses are

u"u" / cgf_i Of_j 2 Of_: ) 2 _6i j

and the turbulent heat flux is

- cppT" u'i'

where the turbulent eddy viscosity is

(2.22)

_2

_,r = _c.-: (2.24)

The turbulence model constants are based on the standard values [55] and are

presented in Table 2.1. The constant Ck is taken to be zero, since dilatational dissipation

is expected to be small in non-hypersonic boundary layers [7].

The equations (2.17) and (2.24) are valid only within fully turbulent regions of

the flow. In order to integrate the governing equations to the solid boundary the low

Reynolds number modification is developed in [6].

UT 0f
= Cp Prt Oz{ (2.23)
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Table2.1: Standard k-e Model Constants

Constant Value

C_, 0.09

C_, 1.44

C,... 1.92

Prt 0.9

_k 1.0

_r,. 1.3

2.2.2 The Low Reynolds Number Correction of Knight

The advantages of the low Reynolds number model of Knight, compared to other low

Reynolds number corrections, are as follows: 1) the model employs the physical dis-

sipation rate _, 2) the normal distance y is not used, and 3) the minimum number of

modifications is introduced, as described by Speziale [52].

The equation for the turbulence kinetic energy (2.17) is modified, first, by formally

incorporating molecular diffusion of k .

O#k O#kfi_ ,, ,,0_ _. 0 ( _T O#fe _ Ote )

Second, the turbulent eddy viscosity is modified by a dimensionless factor f, to pro-

vide the correct asymptotic behavior of the turbulent stresses close to a solid boundary

]g2

#T = _C.f.-=- (2.26)

where

J:,,= O(y -1) as y _ 0

f, --+ 1 as y ---* oo (2.27)

The equation for the solenoidal dissipation is modified by incorporating molecular

diffusion of _. and including the dimensionless function f2 for the dissipation term
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whereasymptoticanalysis[52]indicatesf2 = O(y 2) as y --_ 0, and f2 --" 1 as y -- c_.

The dimensionless function f2 is taken to be

/: = 1 - e-c_ '/_' (2.29)

where Rt is the turbulence Reynolds number

pk-_
R, - __ (2.30)

#e

This provides the proper asymptotic behavior near the wall assuming _ --_ _w as y --* 0

where e_ is the (positive) value of the turbulence kinetic energy dissipation at the wall,

and k = O(y 2) as y --* 0. The dimensionless constant C_3 is determined by comparison

with Direct Numerical Simulation (DNS) results.

The functional form of f_ and the constant C_ 3 in f, were determined through

consideration of the viscous sublayer and logarithmic region of an incompressible flat

plate turbulent boundary layer (i.e., the "constant stress layer"). In this region, con-

vective effects were neglected and the model equations became (the tilda is omitted for

convenience)

0 (-_+tt_) (2.31)o - Oy

0 = -pu'v _y-pe+-_y _+# -_y (2.32)

e_Ou pe = c9 #T + tt (2.33)o : -c_,-ipu v _ - c_i_T + _ -7

where the Reynolds shear stress is

and

_U

-W'v"= _,T_ (2.34)

#r = pc,,f,,k" (2.35)

The superscript - is omitted since the flow is incompressible, and e denotes ev.

The boundary conditions at the wall were

u = 0 (2.36)

k = 0 (2.37)

2. (o_ _ (2.3s)- p Oy )
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and the asymptotic boundary conditions for y ---, oc were [55]

u - In + Bu. (2.39)
t¢

u:

k- _ (2.40)

_ (2.41)
_Y

where u. - _ is the local friction velocity.

For the incompressible constant stress layer, the following form of the turbulent

eddy viscosity is assumed

{ [ 3 5]#T = p_u.y,n 2 y,, -- (2.42)

p_u.y for y > Ym

The functional form for #T satisfies the appropriate asymptotic forms [55, 52] as y _ 0

and y _ co, and is continuously differentiable for all y.

The momentum equation (2.31) is directly integrated in [6], using (2.34) and (2.42)

and subject to boundary conditions (2.36) and (2.39). The constant B in (2.39) depends

on the value of ym. It was verified that ym = 33.0u/u. yields B = 5.0 in agreement

with experiment [38].

The turbulence model equations (2.32) and (2.33) were solved in [6] for k and e

subject to boundary conditions (2.37), (2.38), (2.40) and (2.41). The constant C_

was determined by requiring e,_ = 0.26u4./u in agreement with the Direct Numerical

Simulations (DNS) of Spalart [51] for a fiat plate turbulent boundary layer. This yields

C_ 3 = 0.17. Comparison of the predicted and DNS profiles for e are presented in Fig.

2.2 where _+ =_ eu/u_.

The dimensionless function f_, is then obtained from (2.35) as a function of Rt.

The functions f2 and f_, are shown in Fig. 2.1. These functions are employed without

modification for the compressible 3-D studies. The low Reynolds number modifications

are summarized in Table 2.2.

The model was tested on a series of 2-D flat plate boundary layer computations with

zero and adverse pressure gradient [6]. Computations were performed for incompressible

and compressible, isothermal and adiabatic boundary layers with Mach number up
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Figure 2.1: Functions f2 and f.
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Figure 2.2: Predicted and DNS Results for e

to 6. Good agreement with experiment was obtained for skin friction, heat transfer,

adiabatic wall temperature and velocity profiles for the constant pressure flat plate

boundary layers. Results for the adverse pressure gradient boundary layer showed

close agreement with experimental velocity and Mach number and disagreement for the

surface skin friction and Reynolds shear stress.

Table 2.2: Low Reynolds Number Functions

Function Ezpression

f2(Ret) 1 - e-C'3 _R-_t

where C_3 = 0.17

f,(Ret) See Fig. 2.1

2.3 Nondimensionalization

The governing equations are nondixnensionalized according to the Table (2.3), where a

superscript * denotes a dimensional parameter.

The following nondimensional parameters are formed:

JTM_ = , a_ =
a_
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UocPo_o #_ cv Pr #TRe - , Pr - Prt = --
#_c k_ ' kT

Here _o is the experimental incoming boundary layer thickness equal to 3.5 nun, Ico¢ is

the laminar thermal conductivity, Re is the Reynolds number, Pr, Prt are respectively,

laminar and turbulent Prandtl number and subscript oe denotes freestream values in

the incoming flow.

Table 2.3: NondimensionMization

Variable Non-Dimensionalization Variable Non-Dimensionalization

• " = x_ o y y" = V6_

z z" = z6o fi fi* = fig_o

Z Z" = Pp_ P P* = _p_U2

k
k

_ = g u__.g-

k- = kk;o
k" = kp'_u5

_T

kT

2.4 Equations in Body Fitted Coordinates

A stationary non-singular coordinate transformation is introduced (z, y, z) --* ((, _, (),

where [22]

= _(z,v,z)

= _(_,v,z)

( = ((_,v,z)

(2.43)

The numerical flux 5r is an approximation of the average flux through the cell

interface, which can be defined as, say,

A_AT? /A_ /A,7 "_d_d_? (2.44)

All numerical inviscid and viscous fluxes can be represented in a similar manner.

The average dependent variables Q are defined for each cell volume as
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1 " (2.45)
The grid steps in the transformed domain A_, At/ and A_ are taken to be unity

without loss of generality.

All numerical fluxes are determined at cell interfaces, and dependent variables are

defined at cell centroids.

With the transformation described above the Reynolds-averaged Navier-Stokes equa-

tions governing the flow of viscous turbulent gas and applied with respect to the gen-

eralized six-sided cell volume shown on Fig. (2.3) can be written in integral form as

where /y is the cell volume, _,r/ and _ are the generalized streamwise, body normal

and meridional coordinates, respectively, Q is the vector of conserved variables per

unit volume, E,F,and G are the inviscid fluxes of dependent variables through the

corresponding cell faces, integrated over the appropriate cell area, R, S and T are

similar viscous fluxes and D is the turbulent source term. The indices i, j and k

represent the cell location in the _, r/and _ coordinate directions of the computational

mesh respectively. A non-whole index corresponds to the cell interface, and a whole

index corresponds to the cell centroid.

The vector of conservative dependent variables and vectors of inviscid fluxes can be

presented in a following way (from this point forward the overbar and tilda are omitted

for clarity),

Q

p pU

pu puU + l_p

pv pvU + l_p

pw ; E = pwU + l,p

pe (pe + p)U

pk pkU

_ pe j peU

;F=

pV

puV + mxp

pv V + rn_ p

pwV -F m=p

(pe + p)V

pkV

peV

;G=

pW

puW + n_:p

pvW + nyp

pwW + n..p

(pe + p)W

pkW

peW
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Figure 2.3: Three-dimensional ftaite volume cell.

Here the transformation metrics l=, Iu etc. are z, y, or z components of vectors l, m

and n. These three vectors have a direction of a normal on _, 7? or ( faces, respectively,

and magnitude equal to the area of the corresponding cell surface.

The volume fluxes through each family of cell interfaces U, V and W can be defined

as dot products of velocity vector with the vectors l, m and n, as

U = ulz+vl u+wl=

V = urn= q- Vmy Jr Wmz

W = un=+vn u+wn. (2.47)
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The viscous flux vectors can be written in the following form:

S= 1
/]

0

a(blU_ + b2uo + b3u( + b4o_ + bsv_ "q- b6'v_: ÷ br'w_ + bs'w, 7 +bow;) - 3Pkm:_

a(blou_ + bsu, 7 + bllu< + b12v_ + b13v,_ + blav< + blr,'w_ + bt6w__ + blr'w<) - 3Pkrr_

ot(blsU _ + bsuo 4- blga_: + b20v _ + bl6'V _ -Jr b21v_ + b22wf + b',3"wo -t- b24"w_) - 3Pkmz

$5

Here $5 and coefficients b are:

2.48)

$5 aQ (b_sT, 7 + b26T_ + b27T()

+a ((blu + blov + blsw) u_ + (b4u + b12v + b20w)v_ + (bTu + blsv + b_ew)w_

+ (b3u + buy ÷ blgw) u¢ + (b6u + b14v + b21w)v¢ + (bgu + blTv + b_4w) w¢)

-2pk(m_u + muv + mzw)
,3

4

bl = _Ixm:_ + lure u + l_m_

= 4-m " +
3 _+rny

4
b3 = -mzrtz ÷ myr_y ÷ mz_z

3
2

b4 - 3 lum:r + lzmu

1

bs = -_mzm u

2

b6 = --_m_ny + mun_

2

b7 = --_l_m_ + l_m_

1

2

b9 = --_mznz ÷ mzn:r
V

b_o = -21_mu + lum_
o



2O

511

b12

b13

b14

bls

b16

b17

b18

b19

b..o

b21

b_

b23

b24

b25

b26

b27

2

: --_myn_: 4- rnzny

= l_:mz 4- 4myly 4- m.l_

= m_+-_my+m z

4

= mzn_ + -_myny + mznz

2

= --_Izmy 4- mzly

1

= -_mymz

2

= ---_mynz 4- mzny

_l_mz= - + l_mx

2

: -- _mzl"l z -q- m:rn z

- "_lymz + l_my

2

= -sm_ny + munz

= lxmz + lure u + _lzmz

= m;+m_+sm;

4

= mzn z 4- myrty 4- "_mznz

2 2+ :: m r + my m z

= m_l_ + myly + mzlz

= mx_'lrr q- myr_y 4- mz72 z

R= 1
/]

c_(ClU_ 4- c2u, 7 + cyuc, + c4v¢ + csv, 7

e_(c4u_ + cxou, 7+ c11uc, 4- cl..v_ + c13v, 7

0_(C7//,_ @ ClSUr/ 4- C19//,ff4- C15/3_ 4- C20Vr/

Otk (C25k_ + c26krl + c27k(, ) + ill:

a_ (c',sQ +

0

+ c6v_ + c7w_ + c8w, 7+ co'w¢) - _pkl_

-Jr C14"0¢_ 4- C15"W_ 4- Cl6Wq -"}-Cl7W() -- 3Pklu

4- C21Yt_ "1- C22"l,0_ 4- C23Wr/ 4- C24Wi) -- §pkl:

R5

(pk) + (pk). + (pk)<)

c,.6% + c_.re¢)

2.49)

Here R5 and coefficients c are:
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R5

(I t I )

÷_ ((_2_+ _o_÷ _) _ + (_ + _ + _o_)_ + (_ ÷ _ + _) _

-2pk(l_u + luv + l_w)
0

2 2ci = l_z + ly + l:_

c2 = 31zmz + lure u + Izm:_

c3 = 41znz + lun u + Izn_

c4 = 1--l:_lu
3

c5 - _Izm u + lum_

c6 = -21znu + lyn_

c7 = _l_Iz

2lm
cs = --_ _ _ + l_m_:

2

c9 = -'_lxn_ + lznx

2

Cio = -'_lum:r + l_m u

2

cii = --_lun _ + l_n u

42 "2.
cl2 = t_ + _l u + l_

41m
cia = l_m_ + -_ u u + l_m_

4

ci4 = lxnz + -_lun u + l:n:_

ci5 = 31ulz

2

ci6 = --_lurn_ + l_mu

2

C17 ---- --_lun z + lzn u

2

cls = --_l_m_ + l_m_
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d3 = - - +rt_+ rt:3nz

d4 - 21vn x + lznu

2

d5 - 3mun_: + rnzn_j

1

d7 = -_Iznz + Izn_

2

ds - 3mzn_ + m_n_

1
d9 = -n_nz

3
2

dlo - -_lzny + lynx

2

dll - 3mznu + mun_

4

d12 = l_nz + -_nuly + m_l_.

4

d13 = m_nz + -_munu + mzn_:

d15 - _Izn:j + nzlu

2

d16 = --_mznu + mun_

1

dl 7 - -_rtyrt z

dis - _Izn_ + Iznz

2
d19 "-" --rrtz rtz + mzrtz

3

d2o - _ lyn_ + l_nu

2

d21 = -'_munz + rnznu

d'2.2 = l_n_ + fun u + 31_nz

4

d23 = mznx + mynu + -_mznz

._ 4 2
2 n_ + "_n zd24 = rtx +

n_+ _d25 = nz + nz

d26 = mz rtz "_ _Ttyny + Tt_zrtz

d27 = Iznz + lunu + Izn_
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Here /2 is an elemental volume in the physical domain,

\x,y,z/

with J being the Jacobian of the transformation,

0(_,,7,()
j_-

Oz,y,z

The diffusion coefficients are defined as

1 1 1 (#t #)a=Ree(#+#t) aQ- (7_I)M_Re _rt +_rr

p_rk

The turbulent source terms can be presented as

C_1±Pk - C_ f_ @
' 2 - °

The production term Pk in transformed coordinates is

(_9.51)

(2.52)

Pk
_ 1 (u(Iz + v_ly + W(lz) 2Re/22

" v.: m_" 51 v,m_ w.mz)"+ + +m:)+ +

+2, [(u.. u. 7 + v_v.? + w_w,)(/xrn_ + Ivmy + l_rn.)

+ (u,_,¢+ v_,,¢+ _,_,_)(l_,_ + t_,_,,+ l_,_)

+ (=_n_+ v_,_ + _) (u& + ,_&,+ w&)

+ (u.u¢ + _.v_+ w._¢)(m_n_ + m_n_,+ m_n_)

2

a
-- * (=& + _d_ + _&)(=¢,_ + ,_'_ + wen.)

3

--. (,.,_m_+ v._ + w,,m_)(,,c_ + ,_._ + ,_,_)
3

21
----pk (u_lz + v_ly + w_l_ + unrnz + v.)my + w.Tmz

3/2

+ucn_ + v(ny + wcnz) (2.53)
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Chapter 3

NUMERICAL ALGORITHM

The CRAFT code, originally designed to simulate the flow of viscous hypersonic

chemically reacting gases by solving compressible Navier-Stokes equations in thin layer

approximation [37], and modified by SAIC and CRAFT Corporations by incorporating

turbulence k-e equations, was utilized in the present research. Consequently, the cur-

rent numerical algorithm is that employed in the CRAFT code, with several important

changes. These changes include addition of cross-derivative viscous terms in order to

consider full Navier-Stokes equations, a different implementation of certain boundary

conditions, and incorporation of the low Reynolds number model of Knight.

The current problem of shock-boundary layer interaction requires a solution of the

system of full Reynolds averaged Navier-Stokes equations, with no terms omitted. These

equations in body fitted coordinates are listed in the previous chapter.

A shock-capturing approach allows to capture a complex pattern of flow field discon-

tinuities without any prior knowledge about the flow structure. A Roe scheme together

with TVD type second order correction of Chakravarthy [8] provides for high resolution

of complex shock wave structure and other discontinuities. Shock waves in the present

flow are sometimes weak and accurate determination of their location and strength

might be important for accurate prediction of dynamic loading and heat transfer at the

bottom solid wall.

The numerical method involves strong coupling between mean flow and turbulent

model equations and is made fully implicit to eliminate restrictions on the step size of

explicit schemes. It is necessary since the turbulence model equations contain highly

nonlinear source terms, which are capable to make step size prohibitively small for an

explicit scheme. The schemes are made implicit by fully linearizing all fluxes and source
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terms.

3.0.1 First Order Inviscid Flux

Thefirst orderaccuratenumericalflux at acellinterfaceis determinedwith thehelpof

the approximateRiemannsolverdevelopedby Roe[47],whichprovidesanalgorithm

to expressa flux of dependentvariablesthroughthe cell interfacebasedon the setof

dependentvariablesto the left and to the right of the interface.The Roe'smethod

consistsin determinationthe flux changeacrosseachof the wavesthat emanatefrom

theinterface.Considerthe inviscidflux Fj+½ in (2.46). It is expressed as

+3 = _ Fj + Fj+I+ _F:+½- _ _ (3.1)

Here vector AF._½ represents the flux changes associated with waves traveling in the

positive _? direction, and vector AFj+, corresponds to the flux changes due to waves

traveling in the negative 77 direction. An eigenvalue analysis of the Jacobian matrix

0.._FFreveals the speed and direction of each wave (all Jacobian matrices are listed inOQ

appendix A). Let A be a diagonal matrix which consists of wave speeds, and let L and

R denote the matrix of left and right eigenvectors respectively. All these three matrices

are evaluated at the cell interface. The flux difference across the positive and negative

velocity waves can be computed as follows,

= 1 (Rj+} (A + IAI)j+} Lj+½)(Qj+I -Qj)
2 -

(oF +
= \V_] (QJ+_- #j)

_ I(Rj+_(A-IAI)_+.L_+½)(#j+1- Qj)

(3.2)

(3.3)

The matrices R, L and A are known functions of "Roe-averaged" dependent variables

(see Appendix C) at the cell interface, which satisfy the criteria:
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[(oF)Fj+l- Fj =

The "Roe-averaged" variables are

• (0F)1Ro.(Qj+I - Qj) (3.4)
+ _-0 jj+_

uj+} =

vj+½ =

wj+} =

h.i+} =

It is common to include some sort of entropy fix in the definition of upwind flux in

the regions where one of wave speeds changes sign. However, it was shown in [60] that

such approach gives significant error in the boundary layer, where the wave speed is

close to zero. No entropy fix was used in the present research.

3.0.2 Second Order Correction

A higher order inviscid numerical flux is obtained by adding a correction to the first

order flux. The higher order flux can be expressed as:

HO _ plstr. 1
_+__ _+_ , - +--R j+ ,_i/+ ! 4

(3.5)

with 4) = 1/3 which provides for the 3 -rd order accurate representation. The charac-

teristic variable difference is defined as

n,_j+i = Lj+, (Qj+I - Qj) (3.6)

The characteristic variables are limited in order to avoid nonphysical oscillations

in the regions with sharp gradients of dependent variables such as shock waves or the

viscous/inviscid interface.
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('b÷i

were the minmod operator is defined as

(3.7)

minmod[x, y] = sign(x) × max[0, min{]x] ,y × sign(x)}]

and/3 is a compression parameter chosen to be 1.

(3.8)

3.1 Viscous Flux Treatment

Second order central differencing is employed for the spatial discretization of the viscous

part of numerical flux through cell interfaces. All discretized viscous elements, except

cross-derivative terms, have the form

Cj+½ (_j+l - Cj) (3.9)

where Cj+½ represents a simple average of ¢ in the neighboring cells. For example, the

2_Ou
term /1 _ will be discretized as

Ou I

u Or1 2 ttJ+----L_+ #J )

The metric quantities are defined at the cell interfaces and do not require averaging.

The cross-derivative terms in viscous fluxes have the form

l_m_¢j+t (_-_) or 1,_m_¢j+_.(_) (3.10)

The discretization of cross-derivative terms is illustrated in (Fig.3.1). For example,

in evaluating the flux through (i + 1/2, j, k) interface again the I metric does not require

averaging and again
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Figure 3.1: Discretization of the cross-derivative viscous terms.

and

U( = Ui+l,j -- Ui,j

V_ ---- Vi+l,j -- 12i,j

W( = Wi+l,j -- Wi,j

T( = ti+i,j - ti,j

2 _j
(3.11)

1 (ui+i,j+l Jr ui,j+l Ui+l,j-i -- ui,j-1)
4

1 miJ _ Jr- 4( ,-_:+m,,_+,_,+,,j__+,--,+,,_+._) (3.12)
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3.2 Source Terms Treatment

The source terms are evaluated at the cell centroids, as well as the dependent variables.

The only term which needs to be discretized is the production term, because it contains

velocity derivatives.

(i-Ix,J+1) (i,j_.l) (i+lx,J+l)

(i+l,j)
'i+1/2, j X

...... @__m

(i- 1,j-1 ) (i,_ 1) i (i+ 1,j- 1)
,in
,i i+1/2, j-1

................... J ............. _ .......................... J

11

Figure 3.2: Discretization of the production term.

Second order central differencing is employed in order to discretize velocity deriva-

tives in the production term, given by expression (2.53). This expression contains two

types of terms. An example of a term of the first type is

('4+"Z+'4)(l_+l_+l_)
Such terms are approximated at the centroid of the computational cell by second

order accurate central differences

1

' (t.,+._ + &, ,j)t_l_,j - 2 - -" (3.13)
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Thesecondgroupof termscontainstermswith velocityderivativesin twodirections.

In orderto achievehigherstability andlowersensitivityto possiblemeanflowoscilla-

tions,suchtermsarefirst evaluatedat eachcornerof the2-Dplanecomputationalcell,

and then the termin thecell centroidis deft.nedasaverageoverthefour corners(Fig.

3.2).

For example,in thecornercircledat Fig. 3.2

1
u_ = 2

1

v_ = 2

1

w, = 2

1

1

2
1

l_ - 2

l_j = .1_
• 2

1

l_ -- 2

1

m_ -- 2

1

mu -- 2

1
m z _- --

2

[ui+l,j + ui+l,j-1 - ui,j - ui,j-1]

[Vi+l,j + Vi+l,j-1 -- Vi,j -- Vi,j-1]

[wi+l,j + wi+l,./-1 - wi../- wi,./-_]

[Ui+I,j + Ui.j -- Ui+I,j-1 -- Ui,j-1]

['Vi+l,j + Vi,j -- Yi+l,j-1 -- _i.j-1]

-- - [Izi+},j + Izi+_.j_l]

[lyi+l,j "_- lyi+l,j_ l ]

(3.14)

3.3 Temporal Integration and Linearization

The time-dependent approach has been employed to solve the system of Reynolds-

averaged Navier-Stokes equations in body-fitted coordinates. It means, that, despite

the fact, that the objective of the present research is to obtain a steady-state solution,

the unsteady form of the equations is considered. The steady-state solution is obtained

by marching the solution in time until the convergent state is achieved. A simple first

order Euler differencing is employed for temporal integration in order to save CPU time

and minimize storage requirements.
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.,_ _, +(E,+,-_, +(<+,-<}) +

\ n+l {T. \ n+l

= - - +v_+" T__,) _+'_ - + l/{jk _Ji,j,k (3.15)

In this vector equation a superscript n + 1 corresponds to the next time step, and

a superscript n corresponds to the previous time step, a subscript i + ½ is a shorthand

1 - .
for i + _, 3, k, Q is the vector of independent variables, t_ is the physical cell volume, D

is the source term vector, vectors E, F and G are inviscid flux vectors and vectors R,

S, T are viscous flux vectors in (, _? and ( directions respectively.

In order to linearize the inviscid flux, both the second order correction and Roe

matrices are evaluated at the previous time step. It yields

(Ei+ ½ - E__}) "+1

where

+,4_{AQ/+I + AL+{AQi- J.__}AQi- AL_½AQ{-I(3.16)

A,+_'"_- 21(<+,+(a-- a+)7+,.,)
. 1

a2+,- 2(a7-(A- - a+),+.)

Here A is a Roe's matrix A : oE_, which is evaluated using Roe-averaged variables (see

appendix A), and AQ is the increment in time of the vector of dependent variables.

Similar linearization holds for the other two inviscid fluxes :

n+l

: -

where
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/)_+, -

and B is a Roe's matrix B OF
-- OQ"

2

1 Bj J+72

(Gk+,, - Gk__) "+1

where

(c )"= k+'. - Gk-_

. A __ " ,zXQk-d_ _zXQk_l+ci_Q_+_ +ci,_Q_-Ci_ __

( n)"R _ 1 Ck%l +(C--C+)kCk+_- - 2 "_-'

^L i +nc , = (cr-(c--c )_+_)kt;. 2

and C is a Roe's matrix C oc
- OQ"

The viscous fluxes are linearized by "freezing" the viscosity (laminar and turbulent)

and evaluating cross-derivative terms at the previous time step.

L a L L

ORi+_ n ORi+_ A n
R"+xi+_= R?,+:,+ _ AQi+_ + -b--_i Qi

M R M L

Sn+_ OSj+½
j+_. = Sj+½ + 00_+_

OSj+j. .

,-'w j
JV R

k+½ NL_

T n+l __OTk+½ ,_ __OT;'+½ ,_
k+½ = T_.+, + OQk+l AQk+I + OQk AQk

The source terms are linearized as

(3.17)

0i,i,_

D,_+I n ODi,j,k ,,
ijk = Dijk + OQi,j,k AQi'J'k

(3.18)
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The numerical scheme can be represented as

LHS = RHS

where LHS and RHS are represented by following expressions:

(3.19)

RHS At [¢_' s n "_ (T" T,_ "_ ,3.20)

-liD n

LHS = (I - AtO_,j,k) AQ_,_,k

A£ "L L _R R

m A.,-L. , - A. ,-L. ½

-

_' [( _+.= _+_=)(___ __._)]_Ok+ + _L , __N L , _ _R , _ N R ,

T -

3.4 Approximate Factorization

(3.21)

To avoid the expense of inverting a large sparse matrix, an implicit three-dimensional

approximate factorization is employed to break the banded matrix into three block-

tridiagonal and one diagonal matrices. The implicit solver is slightly different from

standard AF method because the source term Jacobian is split separately, as suggested

in [39]. The approximate factorization algorithm can be presented as follows,

(I- AtO) AQ; = RHS (3.22)
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AQ"+ _

= AQ7 (3.23)

= AQ_" (3.24)

At _ N_+_ AQ_+I + _ _L+_
o

= aQi'" (3.25)

3.5 Boundary Conditions

The following types of boundary conditions are utilized in the present computation:

"no-slip" solid wall, "slip" solid wall, or Euler reflection boundary, supersonic inflow

boundary, supersonic outflow boundary.

3.5.1 "No-Slip" Solid Wall

The physical viscous "no-slip" boundary conditions at the solid wall is

u[ w = 0

Vlw = 0

Wlw = 0

k[ w = 0

qlw -- 0 or TIw isfixed (3.26)

There is no physical boundary condition for the solenoidal dissipation. The one
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derived by considering the equation of turbulence kinetic energy transport in the vis-

cous sublayer, which is the common choice for the turbulence models involving "real"

dissipation, is:

 lw- \ oy ] Iw (3.27)

Several other boundary conditions, like zero gradient of dissipation, proposed by

Lam and Brernhorst [32] etc. were also tested but all of them turned to be unstable

in present computations. The numerical implementation of this boundary conditions

have extremely strong influence on the stability of the computation. As suggested in

[59], on the solid wall the solution point is put on the surface of the wall instead of the

center of the cell, like it is done with internal points. The wall boundary conditions are

treated explicitly. When the wall is adiabatic and the first derivative of temperature at

the wall has to be zero, it is essential to evaluate it with the second order of accuracy

to avoid too big truncation error.

3.5.2 Solid "Slip" Wall Boundary Condition

In order to reduce the number of grid points it was suggested in [24] to treat the side

walls in the crossing shock interaction computation as adiabatic slip boundaries and

no boundary layers are formed near the side walls. This approach is reasonable when

the shocks are reflected from the side walls downstream of the domain of interest. This

approach was employed for 7 ° × 11 ° and 7 ° × 7° geometric configurations.

The inviscid flux through the wall is evaluated exactly as

Finviscid = (0, pn,, pnu, pn: , O, O, 0) T

It was shown in [60], that computing the inviscid flux through the solid wall utilizing

the Roe scheme and fictitious cells can cause additional not physical flux of momentum

across the boundary. The fictitious cells are utilized to compute viscous flux through

the slip boundary and to evaluate the second order derivative of velocity with respect

to _ to be employed in the production of turbulence kinetic energy. Variables in the
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fictitious cellsaredeterminedin the followingway:

pf = (3.28)

Pf = Pp (3.29)

kf = kp (3.30)

ef : ep (3.31)

(3.32)

Here subscript f denotes a fictitious cell and subscript p denotes a physical cell

adjacent to the wall. The velocity components in the fictitious cell are updated in such

a way that the component of the velocity normal to the wall be zero at the wall. The

tangential to the wall component of the velocity in the fictitious cell is equal to the

corresponding component in the physical cell.

3.5.3 Supersonic Inflow

At the inflow boundary the fictitious cells are utilized. The profiles of all dependent

variables in the fictitious cells are determined by the solution of the compressible tur-

bulent flat plate boundary layer using the 2-D boundary layer code, developed by R.

Becht [5], and are not updated during the computation.

3.5.4 Supersonic Outflow

The simple zero gradient boundary conditions are employed at the supersonic outflow.
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Chapter 4

2-D BOUNDARY LAYER TEST COMPUTATIONS

A 2-D test computation was performed to establish the accuracy of the solver and the

ability of the grid used in 3-D simulation to allow to resolve accurately at least the

uncoming flat plate turbulent boundary layer [24]. The solver was validated through

the application to the following computations:

a Laminar flat plate boundary layer

b Turbulent flat plate adiabatic boundary layer

c Turbulent flat plate isothermal boundary layer

In the present chapter, nondimensional variables are plotted in all figures, unless

otherwise stated. The nondimensionalization is described in section (2.3), in Table

(2.3).

4.1 Laminar Compressible Flat Plate Boundary Layer

In order to validate the accuracy of the laminar part of the solver, the compressible

supersonic laminar 2-D fiat plate boundary layer was computed and the solution was

compared to the exact self-similar Blasius solution [53].

The Blasius equation is

with the boundary conditions

d f 12"

dT? Uoo

f'"+ ff" = 0

f(0) = 0

(4.1)
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The self-similar variable 7/is the transformed distance in vertical direction:

v_ /y p dy (4.2)
77= p_ z

The 2-D compressible boundary layer equations can be reduced to the Blasius equa-

tion provided that the molecular viscosity is a linear function of temperature, PT = 1

and the flat plate is adiabatic. In order to compare computational and analytical re-

suits, these three conditions were incorporated into the Navier-Stokes solver.

The 2-D flat plate boundary layer was simulated with Re, based on the plate length,

of 10 4 and M_ = 2.

Y

E

0

0

E

___top__bP_undary................

l

I

I/
flat plate

0

0

0

X

Figure 4.1: Schematic of the computational domain for boundary layer over a fiat plate.

The computational configuration is shown in Fig. (4.1). The inflow boundary

condition, imposed at z = 1., is a developed laminar Blasius boundary layer profile

[53], reinterpolated onto the present grid. Separate computations were performed in

two different planes and with the grid rotated at a certain angle in each of the planes.

Nondimensional pressure contours computed in rotated coordinates axe presented

in Fig. (4.2). The profiles of nondimensional velocity and temperature at several z
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Figure 4.2: Pressure contours for the laminar boundary layer.
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Figure 4.3: Velocity and temperature profiles in the laminar fiat plate boundary layer:

1 Re==O.125x 104 2 Re= =0.5x 104 3 Re= =0.875× 104.



41

locations, plotted vs self-similar coordinate, are compared to the exact solution in Fig.

(4.3). The agreement is excellent.

4.2 Turbulent Flat Plate Boundary Layer

In order to validate that the 3-D code is correctly solving the governing equations,

computational resultswere compared to the resultsobtained with the turbulent bound-

ary layer code, developed independently by R. Becht [5],which utilizesthe same low

Reynolds number correction. Since the boundary layer code uses much more refined

grid,than the 3-D code (typically600 grid points across the boundary layer),the bound-

ary layer code predictions can be considered as being more accurate. The freestream

parameters are taken exactly the same as in the 3-D computation, i.e.the Mach number

is3.95 and the Reynolds number based on the inflow boundary layer thickness,isequal

to 3 × i0s. The computational configuration is the same as shown in Fig. (4.1) for

the laminar computation. The inflow is a turbulent boundary layer profile,the same

one as in the 3-D computation. The profilesof dependent variables vs y coordinate

shown at the figuresbelow are taken 10.5 cm downstream, which constitutes30 charac-

teristicdistancies,and the whole computational domain is12.25 cm (35 characteristic

distances) long in streamwise direction. The characteristicdistance is chosen equal to

the experimental boundary layer thickness at the upstream location.

The grid has N, = 72 nodes in streamwise direction and Ny = 81 nodes in vertical

direction. The number of grid points within the boundary layer is 52 at the end of the

flatplate. The grid isuniform in streamwise direction.The yl+ location of the second

cellcentroid is 0.3. The first18 cellsadjacent to the wall are uniform, then geometri-

cal stretching with stretching coefficientof 1.2 isemployed until a computational cell

becomes a square.

The grid, employed in the boundary layer computation, consists of 700 nodes, 600

of which are located in the boundary layer. The boundary layer code results were

reinterpolated to the sparse grid,used by the 3-D code.

At the supersonic inflow boundary alldependent variables are set according to the
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data, obtained with the boundary layer code. The "no-slip" boundary condition is

implemented at the flat plate, and zero gradient boundary conditions are imposed at

two other boundaries.

4.2.1 Adiabatic Wall Test Case

The results of the test computations over the adiabatic (zero heat flux) flat plate are

presented below. The boundary condition on temperature is simply that the temper-

ature derivative at the wall is zero. It is essential to utilize a second order expression

for the derivative in order to minimize a truncation error and accurately predict the

adiabatic temperature.

The computed streamwise velocity, vertical velocity, static temperature, turbulent

kinetic energy and dissipation of turbulence kinetic energy profiles are compared to

the boundary layer code results in figures (4.4 - 4.6) at some X location close to the

trailing edge of the flat plate. The abscissa is the dimensionless y coordinate. The

results obtained with the 3-D Navier-Stokes solver using a grid of 81 nodes in vertical

direction, are in excellent agreement with those computed with the boundary layer

code.

The distribution of the skin friction coefficient along the flat plate is compared to

the boundary layer code results in Fig. (4.7 a). The deviation at any x location does not

exceed 0.6%. The adiabatic wall temperature, presented in Fig.(4.7 b), is in excellent

agreement with the boundary layer code predictions and the deviation between two

results does not exceed 0.04%.

4.2.2 Isothermal Wall Test Case

The isothermal wall temperature is kept constant at 265 K (the inflow static tempera-

ture is 63.2 K). All other boundary conditions are the same as in the test case above.

The L-2 norm residual (Fig. 4.8) computed as the square root of the squares of

the right hand sides of the seven governing equations is down 11 orders during the

computation and reaches the machine zero when the solution is converged. As in the

adiabatic wall case, velocity, temperature, turbulence kinetic energy and dissipation
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Chapter 5

PROBLEM DEFINITION

The focus of the present study is to validate the low Reynolds number correction

of Knight to the standard k-e model in numerical simulation of the flow involving the

crossing shock wave/boundary layer interaction. The double fin configuration utilized

in the experiments of Zheltovodov et al. [62] is chosen for this purpose since both

extensive experimental and previous computational results are available for comparison.

Experimental data available for comparison includes surface pressure, heat transfer,

adiabatic wall temperature and surface flow visualization. Computational results are

extensively compared to the experimental results for all cases. Comparison to the

previous computational results of Knight et al. [24] using the Chein's model and of Zha

and Knight [61] using the full Reynolds stress equation model is also reported for the

heat transfer rate and adiabatic wall temperature.

The shock waves are generated by a pair of fins which are mounted normal to a fiat

plate and form a converging channel. Three configurations with fin angles of 7 ° x 11 °,

7 ° x 7 ° and 15 ° x 15 ° have been examined at Mach 3.9. The experimental configuration

is presented in Fig. 5.1. The incoming flow parameters are summarized in Table 5.1.

The inflow profiles were generated with the boundary layer code [6], which utilizes

the same turbulence model. The appropriate inflow profile is considered to be the one

created by the boundary layer code which matches the experimental value of displace-

ment thickness. As suggested in [24], [61], thin boundary layers on side walls of the

double fin channel can be neglected for the 7° x 11 ° and 7° x 7° cases, since their

influence is limited to regions close to the side walls, where no experimental data is

available anyway. Consequently, the side walls are treated as slip boundaries in the
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Ref.

Table 5.1: Computational Conditions

Moo al a_. Re_ Pt_
MPa OK

Tt_

mm

EXPERIMENT

Zheltovodov et al [62] 3.95 70 110 3.0 × 105 1.5

Zheltovodov e_ al [62] 3.95 7o 7° 3.1 x 105 1.5

Zheltovodov et al [62] 3.95 15o 150 3.0 x 105 1.5

260

261
262

1.1

1.1
1.1

COMPUTATION

Case 1 3.95 70 11° 3.0 x 105 1.5
Case 2 3.95 7° 7 ° 3.1 x 105 1.5

Case 3 3.95 150 150 3.0 × 105 1.5

260 1.1

261 1.1
262 1.1

Moo

Re_

Pt o_

LEGEND

freestream Mach number Tt_

Reynolds number based on 6_ 6_
freestream total pressure al, ao.

freestream total temperature

upstream displacement thickness

fin angles (deg)

2 3 4

T _

t I
73.5 mm I "-_ ............ 32 mm .__t__
, /

I ' : 21J

?46 m:9--_mgl . -

• 112 mm --
J. 192 mm "/

Figure 5.1:7 ° x 11 ° (Zheltovodov et al.)
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7° x 11 ° and 7° x 7° computations, which saves memory and computational time. Of

course, after the shocks are reflected from the side walls and come to the central part

of the computational domain, computational results will deviate significantly from ex-

periment. However, nearly all of the experimental data for the 7° x 7° and 7° x 11 °

configurations was obtained upstream of this point. The legitimacy of this approach

will be examined. This is not applicable to the 15 ° x 15 ° case, since in this case the

shock is reflected from the sidewall almost in the middle of the computational domain in

streamwise direction, and the shock wave-sidewaU turbulent boundary layer interaction

should be treated adequately.

Three configurations were considered, with different fin angles: 7 ° x 11 °, 7 ° x 7°

and 15 ° x 15 °. For each case two separate computations were performed in order to

determine the heat transfer coefficient

(5.1)

where q_,(2, z) = -_,_OT/Oy is the wall heat transfer. First, the wall temperature

was fixed at T,_ = 1.031Tt_, and the local heat transfer q_,(x, z) determined. Then,

the wall was assumed adiabatic and the local adiabatic wall temperature T_(z, z)

was determined. This approach has been employed previously for comparison with

experimental heat transfer [24], [34], [61].

In addition, a separate computation was performed for the first case in order to

investigate the influence of the wall temperature. Details of the computations are

presented in Table 5.2. The results of the computations are described in the next

chapter.
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Table5.2: Detailsof Computations

Ref al a2 B C T_o N_ N,j N:

Case

Case

C ase

Case

Case

Case

C ase

Case

Case

Case

la

lb

lc

ld

le

if

25

2b

3a

3b

7° 11 ° S I 101 81 49

7° 11 ° S A 101 81 49

7° 11 ° S I 202 81 49

7° ii° S I I01 162 49

7° ii° S I I01 81 98

7° 11 ° S I, T = 270k 101 81 49

7° 7° S I I01 79 49

7° 7° S A I01 79 49

15 ° 15 ° N I 101 79 65

15 ° 15 ° N A 101 79 65

Case la

Case lb

Case lc

Case ld

Case le

Case if

Case 2a

Case 2b

Case 3a

Case 3b

N..

Ay+l 

0.5 2.2 x 10 -4 0.5 0.2 0.5 0.70 0.62

0.5 2.2 x 10 -4 0.5 0.2 0.5 0.80 0.72

0.25 2.2 × 10 -4 0.5 0.2 0.5 0.72 0.65

0.5 1.1 × 10 -4 0.25 0.2 0.5 0.35 0.31

0.5 2.2 × 10 -4 0.5 0.1 0.25 0.70 0.63

0.5 2.2 × 10 -4 0.5 0.2 0.5 0.68 0.60

0.5 2.2 × 10 -4 0.5 0.2 0.5 0.55 0.52

0.5 2.2 × 10 -4 0.5 0.2 0.5 0.63 0.59

0.5 2.2 × 10 -4 0.5 1.6 × 10 -4 0.5 1.04 0.87

0.5 2.2 × 10 -4 0.5 1.6 × 10 -4 0.5 1.16 0.97

LEGEND

number of points in z

number of points in y

number of points in z

rms grid spacing at wall in wall units

I Isothermal wall

A Adiabatic wall

N "No-slip" side walls

S "Slip" side walls
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Chapter 6

RESULTS

6.1 Crossing Shock 7° × 11 °

The inviscid shock structure is presented in Fig. 6.1. Two mviscid shocks originate

at the sharp fin tips, intersect at approximately a: = 90mm and are reflected from the

wedge side walls at approximately x = 140ram (from 7° fin) and _ = 157mm (from 11 °

fin). The oblique shock angles are well predicted by inviscid theory. There is also a

rarefaction fan formed by the flow expanding downstream of the corner at 11° fin. The

wave structure close to the bottom flat plate can be very complex and substantially

different from the inviscid wave structure due to the nature of the shock wave-turbulent

boundary layer interaction, as will be described later.

General description of the "crossing shock interaction" flow can be found in [3, 15,

40, 42, 43]. The description of the present flow, based on both experimental and com-

putational results, is available in [24] and [61]. The incoming flow separates across the

entire spanwise direction and becomes involved in the uplifting motion. The computa-

tional domain and 3-D streamlines are presented in Fig. 6.2. The streamLines, which

originated at the flat plate at inflow boundary, converge downstream the interaction.

The flow is dominated by a pair of counter-rotating cross-flow vortices. They merge and

form a counter-rotating vortex pair which moves towards the left fin and forms a low

total pressure jet, as shown in Fig. 6.3. The vortex pair entrains the low energy fluid

in the incoming boundary layer into a concentrated region. The picture is essentially

three-dimensional and asymmetric due to the different fin angles and different shock

strength.

Figs. 6.4,6.5 and 6.6 present the computed surface skin friction lines and experi-

mental surface flow visualization respectively. The streamlines in Fig. 6.4 are colored
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Figure 6.2: Turbulence kinetic energy contours and 3-D streamlines for 7° x 11 _'.

063 1 95 327 459 591

Figure 6.3: Total pressure contours and 3-D streamlines for 7° x 11 °.
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accordingto the valuesof static pressure.The Fig. 6.5 is takenfrom [24]. It has

beennotedbeforei24][41]that thecomputedsurfaceskinfriction linesaresensitiveto

theturbulencemodelemployed.Comparisonof currentresultswith [24]showsgeneral

agreementaswell asa numberof substantiallydifferentdetails. Both incidentsepa-

ration lines(linesof coalescence[48])emanatingfrom the fin leadingedges(1 and 2)

areclearlyobservedin Fig. 6.4 in agreementwith experimentalresultsandprevious

simulationsof Knight et al [24] using the k - e model with the Chien low Reynolds

number correction. These separation lines are associated with the incident single fin

interactions. The computed and experimental separation line angles, measured relative

to the x-axis, agree within 9%. However, contrary to the computation [24] with the

Chien's model I9] (see Fig.6.5), the incident separation lines do not coalesce near the

center of the region but rather continue downstream almost in parallel until they con-

verge at z _ 110 mm to form a narrow band of skin friction lines (3), which is offset

to the left side of the channel. It is denoted in [24] as the left downstream coalescence

line. This line represents the surface image of the boundary between the left and right

vortices generated by the incident single fin interactions. The vortices are evident in

the crossfiow velocity vectors (Fig. 6.7) at z = 112 turn. The crossflow velocity vectors

near the surface change direction at 3. Lines of divergence are also apparent near the

right fin (4) and left fin (5) associated with the incident single fin interaction. In a

major difference with the Chien's model results, a second line of coalescence (the right

downstream coalescence line in Fig. 6.5) is not present in this computation. Conse-

quently, the model does not predict a secondary separation underneath the left side of

the right vortex (see [24]). The difference is due to deviation in the predictions of the

pressure distribution in the spanwise direction, obtained with each turbulence model,

as described below.

The computed and experimental surface pressure distribution in the spanwise di-

rection at z = 112 mm, normalized by the freestream static pressure p_, is displayed

in Fig. 6.8. This location corresponds to the streamwise location No. 4 (see previous

chapter). The plot contains computational results obtained with three different turbu-

lence models as described above. The abscissa Z--Z'rML represents the spanwise distance
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Figure 6.6: Experimental surface flow for 7 ° x 11 °
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measured from the TML (Throat Middle Line, Fig.5.1). The computed and experimen-

tal surface pressure are in general agreement for all three models. However unlike in

the present computations, the Chien's model predicts a local adverse pressure gradient

in spanwise direction in the region -7ram < Z--ZTML < 0ram. As described in detail

in [24], the flow near the surface at this location is moving towards the left fin and the

adverse pressure gradient causes the secondary separation and the appearance of the

right downstream coalescence line, which is not predicted by the present computation.

LEFT VORTEX

6 8_ lo 12 14
\ LINE OF COALESCENCE

Figure 6.7: Crossflow velocity vectors at z = 112 mm for 7° × 11°

The computed and experimental surface pressure along the Throat Middle Line

and at streamwise locations z = 46mm and z = 79mm is displayed in Figs. 6.9,

6.10 and 6.11, respectively. The computed and experimental surface pressure on TML

are in good agreement for z < 135 mm, although the computation underestimates

the extent of the upstream influence, as observed in previous studies (e.g., [24], [42]

). The computed pressure does not accurately predict the pressure rise (beginning at

z = 145 ram) associated with the shock reflection from the 7° fro, since the computation

omits the boundary layers on the fin surfaces. The uncertainty in experimental surface

pressure measurements does not exceed +0.570.
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Figure 6.9: Wall pressure on TML for 7 0 × 11 °



62

4

3

PIP

2

Present k-E

........... RSE

....................k-EChien

• Experiment

.°30 , , I0 ' , ,-20 -10 0 ' ' 1 ' '2'0' '3'0

Z- ZrML (mm)

Figure 6.10: Wall pressure at z = 46 mm for 7 ° × 11 °

PIP

Present k-_

........... RSE

.................... k-_ Chien

• Experiment

z ""= • ....

0-30 -2o .... -1'o O " 1'o
Z- Zrv L (mm)

' '2'0 .... 3'0

Figure 6.11: Wall pressure at z = 79 mm for 7° x 11 °



63

095 2.84 4.72 6.61 8.49

Figure 6.12: 3-D shock structure for 7° × 11:

The 3-D wave structure is presented in Fig. 6.12, which contains nondimensional

static pressure contours at the lower surface, in "inviscid" region and at three z loca-

tions. The 2-D pressure contours at three successive z locations are presented at Figs.

6.13, 6.15 and 6.17. Schematic plots of corresponding wave structure at each location

are presented in Fig. 6.14, 6.16 and 6.18.

The pressure contours are in general agreement with corresponding results described

in [24]. At x -- 46mm (6.13) the pressure contours show two individual h-shock struc-

tures, generated by two fins, which have not yet intersected. The single fin h-shock

structure, which is a result of the interaction of inviscid shock wave and developed

boundary layer, is described in detail in [10]. The primary shock bifurcates into a sep-

aration shock and a rear shock. The separation vortex is located beneath the main

shock. At z = 79mm inviscid shocks have not yet intersected, but separation shocks

have reflected from one another. At z = ll2mm inviscid shocks have already inter-

sected, and, as described in [24], there is an expansion region in the central part of the

flowfield, between the reflected shocks, which extends downward.
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Figure 6.16: Wave structure at z = 79 mm for 70 x 11°:
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Figure 6.18: Wave structure at z = 112 mm for 7° x 11°
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The turbulence kinetic energy contours at the same three subsequent z locations

are presented at Figs. 6.19, 6.20 and 6.21 together with 2-D "streamlines" in the y - z

plane. These three plots are made not to scale. The 2-D "streamlines" are not real

streamlines, but curves tangent to the component of velocity in the y - z plane. These

lines are plotted to indicate the location of vortices. Unfortunately, no experimental

measurements of turbulence kinetic energy are available for comparison.

The two maxima at Fig. 6.19 correspond to the individual separation vortices gen-

erated by two single fin interactions, with the highest k in the vortex which corresponds

to the 11 ° fin. These vortices converge (Fig. 6.20) to form a counter-rotating vortex

pair with a maximum of k located between two vortices. Similar to the results described

in [61], downstream of the interaction (Fig. 6.21 ) the turbulence kinetic energy con-

tours have a typical mushroom-like shape. The merged vortex pair has entrained most

of the boundary layer. In a major difference with the results obtained with the RSE

model [61], the maximum value of turbulence kinetic energy is two times lower, than

similar value in [611 . The two vortices, obtained in the present computation, are signif-

icantly weaker than in [61]. All this differences may be attributable to the differences

in turbulence models employed in the computation.

The computed and experimental surface heat transfer coefficient Ch is presented in

Figs. 6.22 to 6.25. The uncertainty in the experimental heat transfer measurements

is ±10% to 15%. The computed Taw, required for the computation of Ch, is within 1

to 1.5% of the experimental measurement (see [24]) obtained using the thermovision

technique as well as the thermocouple measurements. The x-locations represented at

Figs. 6.23 and 6.24 are upstream of the interaction of the shocks. The computed heat

transfer at these locations is in reasonable agreement with experimental values, but all

experimental measurements where taken in the region of the flow located in front of the

shocks. Downstream of the intersection of the fin-generated )_-shock structures (i.e.,

for z > 90 mm on the TML) the computations with all three considered turbulence

models overpredict the heat transfer by approximately a factor of two, with a mod-

est improvement in the computations performed with RSE and present models. This

discrepancy is attributable to the limitations of turbulence models. Comparison of the
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Figure 6.21: Turbulence kinetic energy contours at z = 112 mm for 7 ° × 11 °

computed and experimental heat transfer at z = 112 mm downstream of the intersection

of the A-shock structures, shows significant disagreement. In summary, the computed

Ch displays qualitatively the trends observed in the experiment, but does not provide

reliable values downstream of the interaction of the A-shocks.

The computed and experimental adiabatic wall temperature distributions in stream-

wise and spanwise directions are displayed in Figs. 6.26 to 6.29 respectively. The results

are compared to the computational results from [24] and [61]. Figs.6.30-6.33 contain

comparison of the adiabatic wall temperature to the experimental results, obtained with

two different techniques: thermocouple and thermovision measurements. The experi-

mental uncertainty in the adiabatic wall temperature measurements is extremely low

(±0.15°K). The results of the present computation exhibit excellent agreement with

the experiment.

Figs. 6.34 and 6.35 contain contour plots of the adiabatic wall temperature, nondi-

mensionalized by the adiabatic wall temperature at infinity. The experimental results

were obtained using thermovision technique.

The results are in qualitative agreement. Computations correctly predict a slight

temperature rise downstream of the interaction of the two crossing shocks and in the

vicinity of the line of coalescence of the two vortices. The temperature decrease at the
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rarefaction fan when the flow expands behind the corner at 11 ° fin, is also predicted.

The computational results for the temperature at _/6_ more than 42 are not accurate,

since information in these locations is affected by the shocks reflected from the side

walls. However, in the present computations boundary layers on the side wall surfaces

are not resolved and fins are treated as inviscid boundaries.
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Figure 6.26: Adiabatic wall temperature on TML for 7 ° × 11°
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Figure 6.27: Adiabatic wall temperature at z = 46 nun for 7° × 11 °
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6.2 Crossing Shock 7 ° x 7°

The computed skin friction lines and experimental surface flow visualization for the

7 ° x 7 ° configuration are presented in Figs. 6.36 and 6.37, respectively. The separation

lines originating from the fin leading edges are apparent in the computation and experi-

ment. The computed and experimental separation line angles agree within 77o. Similar

to the previous case, the computed skin friction lines do not intersect, but, after chang-

ing direction, slowly converge towards each other. Two weak divergence lines 3 and 4

can be found near the fin surfaces. The computational flow pattern is completely sym-

metric, however, experimental results display slight asymmetric behavior downstream

in the vicinity of the centerline.

The computed and experimental surface pressure, normalized by the freestream

static pressure p_, are displayed in Figs. 6.38 and 6.39 along the Throat Middle Line

and at the three streamwise locations. The computed and experimental surface pressure

on TML and in all three x locations are in excellent agreement with experiment.

The computed and experimental surface heat transfer coefficient Ch is presented in

Figs. 6.40 to 6.43. The results exhibit significantly better agreement with the exper-

imental measurements than in the previously considered 7° x 11 ° configuration case.

Even downstream of the crossing shock intersection (i.e. for z > 90 mm on the TML)

the computations are virtually within the experimental uncertainty. The adiabatic wall

temperature, presented in Figs. 6.44 to 6.47) is again in excellent agreement with

experiment.

It is not yet clear why the same turbulence model provides for good heat transfer

predictions in the 7 ° x 7° case and for much worse predictions in the 7 ° x 11 ° case. A

possible explanation, suggested by Dr. A.A. Zheltovodov, is the partial relaminarization

of the flow under the influence of the favorable crossflow pressure gradient, which can

cause a decline in the value of the heat transfer coefficient in the 7 ° x 11 ° case. The

regions of favorable pressure gradient are evident in Fig. 6.4, where surface streamlines

are colored according to static pressure.
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Figure 6.37: Experimental surface flow for 7 ° × 7 °
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6.3 Crossing Shock 15 ° _ 15"

The computed skin friction lines and experimental surface flow visualization for the

15 ° :< 15 ° configuration are presented in Figs. 6.48 and 6.49, respectively. The two

separation lines 1 and 2 originating from the fin leading edges are apparent in the

computation and experiment. The computed and experimental separation line angles

agree within 1270. The computed skin friction lines show complex behavior in the

vicinity of the intersection of the separation lines (Fig. 6.50). Two lines of coalescence 3

and 4, which are caused by secondary separation of the low Mach number fluid beneath

the previously separated main flow [24], form downstream in qualitative agreement with

experiment. The second coalescence line was not present in previous computations

which may be attributable to the insufficient resolution. Two strong divergence lines 5

and 6 are located near the fin surfaces.

The computed and experimental surface pressure, normalized by the freestream

static pressure p_, are displayed in Figs. 6.51 and 6.52-6.54 along the Throat Middle

Line and at the three streamwise locations respectively. The computed surface pressure

on the centerline is overpredicted by 22 70 in the vicinity of the crossing shock inter-

action. However, pressure distribution in spanwise direction is in good agreement with

the experiment.

The computed and experimental surface heat transfer coefficient Ch is presented

in Figs. 6.55 to 6.58. The z-location represented at Figs. 6.23 is upstream of the

interaction of the shocks and the computed heat transfer at this location is in reasonable

agreement with experimental values. As in the previously considered 7 ° × 11 ° case,

computation overpredlcts the heat transfer rate downstream of the interaction by a

factor of 1.8. Computation also predicts significant drop in heat transfer coefficient at

the intersection point, which is not present in experimental results. Comparison of the

computed and experimental heat transfer at _ = 79 and z = 112 mm downstream of the

intersection of the A-shock structures, shows significant disagreement.

Unlike in the previous computations, the adiabatic wall temperature along the cen-

terline presented in Fig. 6.59, is 370 higher than corresponding experimental result after
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Figure 6.49: Experimental surface flow for 15 ° x 15 °
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Figure 6.50: Computed skin friction lines for 15 ° × 15 ° in the vicinity of the intersection

p oint:

1 Intersection point

2 Left downstream coalescence line

3 Right downstream coalescence line.

the shock intersection. However, the streamwise temperature distribution (Figs. 6.60

to 6.62) is again in excellent agreement with experiment.

Figs. 6.63 and 6.64 contain contour plots of the adiabatic wall temperature, nondi-

mensionalized by the adiabatic wall temperature at infinity. The experimental results

were obtained using thermovision technique. The results are in qualitative agreement.

Computations overpredict by several percent a slight temperature rise at the centerline

and in the vicinity of the lines of coalescence downstream of the interaction of the two

crossing shocks. The temperature decrease at the rarefaction fan when the flow expands

behind the corners, is also predicted.
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Figure 6.55: Heat transfer on TML for 150 x 15 °
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Figure 6.56: Heat transfer at z = 46 mm for 15 ° x 15 °
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Figure 6.57: Heat transfer at z = 79 mm for 15° × 15°
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Figure 6.59: Adiabatic wall temperature on TML for 15° x 15 °
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Figure 6.60: Adiabatic wall temperature at • = 46 mm for 15° x 15°
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Figure 6.61: Adiabatic wall temperature at z = 79 mm for 15 ° x 15 °
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6.4 Influence of Computational Parameters

6.4.1 Grid Refinement Study

A grid refinement study was performed for the 7° x 11 ° case in order to investigate the

influence of the grid resolution on the results. The grid refinement study was performed

by doubling the number of the grid nodes in each direction one at a time. The details

of the grids involved in the grid refinement study can be found in the Table 5.2 in the

previous chapter (cases lc, ld and le).

It was found that the pressure distribution on the bottom surface is virtually insen-

sitive to the grid refinement, as it is shown in Fig.6.65. The heat transfer coefficient

on the centerline (Fig. 6.66) varies with the grid resolution within 8% in the region

downstream of the crossing shock interaction. This value is significantly less than the

deviation of computed heat transfer coefficient from the experimental value, and from

this point of view the accuracy of the computation is considered sufficient (i.e., the

numerical truncation error for the heat transfer coefficient is small compared to the dif-

ference between the computed and experimental values in the 3-D interaction region).

P/P_

5

BASELINE CASE ,,
},'

....................._ ................... GRID REFINED IN X DIRECTION ]

/GRID REFINED IN Y DIRECTION

0 , , , I , , , I , ,

0 50 100

X, mm

150

Figure 6.65: Pressure at the centerline for 7 ° x 11°: grid refinement study
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Figure 6.66: Heat transfer coefficient at the centerline:

grid refinement study for 7° × 11 °

6.4.2 Influence of the Wall Temperature

Separate computation were performed for the 7° × 11 ° case in order to investigate the

influence of the wall temperature on the heat transfer coefficient. As briefly described

in the previous chapter, in order to determine the heat transfer coefficient

ch = q=(=, =) - z)]}

two computations are needed, one with the fixed bottom wall temperature Tw, and

another one to determine the adiabatic wall temperature TAW = TAW (z, z). In order

to verify the legitimacy of the present approach for computing Ch and to investigate

the influence of the choice of T_ on Ch, two computations with two different values of

T_ (265K and 270K) were performed.

Figs. 6.67 and 6.68 contain heat transfer distributions along the centerline and at

one of the crossections respectively, obtained with two different wall temperatures. The

results show that the influence of the choice of wall temperature on the heat transfer

coefficient is negligible as expected.
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Chapter 7

CONCLUSIONS

7.1 Conclusions

A crossing shock wave-turbulent boundary layer interaction has been studied numer-

ically. The shock waves are generated by a pair of fins which are mounted normal to

a flat plate and form a converging channel. The focus of the study has been to inves-

tigate the ability of the low Reynolds number correction to the "standard" k - e two

equation turbulence model to provide for improvement in the predictions of adiabatic

wall temperature and heat transfer rates during the interaction of the shock waves with

the turbulent boundary layer on the fiat plate. Three configurations with fin angles of

7 ° × 11 °, 7 ° x 7 ° and 15 ° x 15 ° have been examined at Mach 3.95. Experimental data

available for comparison includes surface pressure, heat transfer, adiabatic wall tem-

perature and surface flow visualization. The results obtained with this new turbulence

model are also compared for the 7° x 11 ° configuration to the previous computational

predictions obtained with the Chien's low Re number correction [24] to the two-equation

k-e model and to the corresponding computations with a full Reynolds stress equation

model [61].

Computations employ the 3-D Reynolds-averaged compressible Navier-Stokes equa-

tions with turbulence represented by the two equation k-e model with the low Reynolds

number correction of Knight. A series of test computations has been conducted to

validate the solver. The grid refinement study was performed and influence of compu-

tational parameters was examined.

The principal conclusions are:

• The computed surface pressure displays good agreement with experiment for all
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three turbulence models for the 7° × 11° configuration. For the 15° x 15 ° con-

figuration pressure is overpredicted by 22 % at the centerline in the vicinity of

the point of the intersection of the oblique shocks but exhibits good agreement in

other regions.

* The computed surface skin friction Hnes and experimental surface flow visualiza-

tion display close agreement in the location of the initial separation lines, and are

in qualitative agreement within the crossing shock interaction region. However,

in a major difference with the Chien's model results for the 7 ° x 11° configuration,

the secondary separation line is not predicted by the present computation due to

the difference in computed pressure distribution in the spanwise direction. The

secondary separation line is present in the 15° x 15° computation.

• For the 7° x 11 ° configuration, the computed heat transfer is significantly over-

predicted by all three models within the region downstream of the intersection of

the A-shocks generated by the fins. However, a modest improvement is achieved

compared to the computations with Chien's model. For the 15 ° x 15° configura-

tion, the computed heat transfer within the region downstream of the intersection

is also significantly overpredicted by the present computation.

• For the 7° × 7° configuration, the computed heat transfer is in a good agreement

with the experimental results within the whole computational domain.

• The adiabatic wall temperature is accurately predicted for all considered config-

urations, except that it is overpredicted by 3% in the vicinity of the centerline in

the 15° × 15 ° case.

7.2 Discussion of the Results of the Validation of the Low Reynolds

number correction of Knight

The main objective of the present research was the validation of the low Reynolds num-

ber modification of Knight to the standard k - e model in application to a crossing
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shock flow. The model predicts adiabatic wall temperature better, than other consid-

ered models. However, the surface heat transfer downstream of the interaction of the

shocks is still overpredicted by the present model for the 7 ° x 11 ° and 15 ° x 15 o config-

urations. The results with the current model exhibit a modest improvement compared

to the Chien's model results, however, the difference is small compared to the deviation

with experiment. Even the full Reynolds stress equation model, which is considerably

more complex and takes better account of the flow physics, does not provide for essen-

tim improvement in the prediction of the wall heat transfer rate. In the 7° x 7° case

computations are m reasonable agreement with experiment for all variables including

surface heat transfer.

In summary, all three considered turbulence models overpredict Ch downstream

of the interaction. The reason for that is not clear and further research is needed.

Several explanations co_dd be suggested. The first possible explanation, suggested by

Dr. A.A. Zheltovodov, is the partial relammarization of the flow under the influence

of the favorable crossflow pressure gradient, which can cause a dec]_ine in the value

of the heat transfer coefficient in the 7 ° x 11 ° case. The regions of favorable pressure

gradient axe evident in Fig. 6.4, where surface streamlines are colored according to static

pressure. The second possible reason is that all three considered models have a build-in

assumption of the presu.re gradient being small, which is not the case in the present

computation. The current model was tested in [6] for a 2-D boundary layer flow with

adverse pressure gradient. Results showed close agreement with experimental velocity

and Mach number and disagreement for the surface skin friction and Reynolds shear

stress. The k - e model is known to perform worse in the presense of a strong adverse

pressure gradient and separation [55]. The third possibility is a nonadequate resolution

of the secondary structures, located underneath of the main sep_ation region, at least

in the 15 ° x 150 case.
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7.3 Future Work

Substantial research efforts have been invested into studying shock wave-turbulent

boundary layer interactions, in particular, crossing shock interaction. However, a com-

plete understanding of the flow physics has not been achieved so far and further research

is needed.

In the field of experimental investigation of crossing shock interaction flows sub-

stantially more detailed experimental measurements for asymmetric cases are needed

in order to provide for further insights into the problem and to validate computational

results and different turbulence models. In particular, more measurements of main

flowfield and wave structure as well as of turbulence statistics, wall heat flux and shear

stress are needed.

In the field of numerical investigation of crossing chock flows a significant improve-

ment can be achieved by utilizing adaptive grids. Crossing shock flows usually manifest

a complex wave structure, especially witkin boundary layer, with some of the waves

being weak, and no possibility exists to predict the wave structure a priori (except

for main "inviscid" shocks). Consequently, better predictions could be obtained with

adaptive grids, both structured and unstructured.
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Appendix A

Jacobian Matrices

Explicit form of the Jacobian matrices is presented in this appendix. The matrices

are obtained analytically in [22] by rewriting the flux vectors in terms of conservative

variables and differentiating each flux with respect to each conservative variable.

The Jacobian matrices A, B and C obtained by differentiating inviscid fluxes with

respect to conservative variables, are :

A

0 Iz ly lz 0 0 0
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where 3,t = ['ye - (7 - 1)K], K = "" +": t'"'_, , U = l=u+l:jv+izw, V = m_u+m:,v+m.w,

and W = n_u + nyv + n:w.

The Jacobians are evaluated at the cell faces using the conservative variables in the

neighboring cells.

The Jacobian matrices L, M and N obtained by differentiating viscous fluxes with

respect to conservative variables, are presented below.

L L
i+ _ -_"

0 0 0 0 0 0 0

c_.,+ J" 'It; ui+c4_+erwi]: ol _c_i+ _ 5a.pl -ct "- J""_"¢_ pl -eli+ _ "f'Y'ol 0 0 0
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OT_+_
N_+ _ =_

• ._ OQk

OT [u_ "- _- 1n5.1 = -d25aQ--_p [k + ak+_ d3-- + d14 y_" + d24 w_ + 2d6 ukvk + 2d9 u_:w_: + 2d17 v_:wk
- Pk Pk Pk Pk Pk p_ j

ns,2 = Uk -- do wk ]
- Pk Pk p_, J

Or d.
n5"3 = -d25aO"_p v Jk + Ctk+_ -- --- L Pk Pk Pk .J

OT [_d24 wk doUk d_zVk]
rts,4 = -d25aQ_p w [k + ak+_ -- --- k Pk Pk PkJ

The diffusion coefficients are defined as

c_k+k - 2Re U

aQ_+_. = (7-1)M£Re2 Jk+l+ Jk

1 1 (/.t+_.) ]k+l+ [&
_k+_ = Re_ v v

I I

akk+½ - Re2{(_),k+l+ (_) [to)

O3_:k+_.Op - Re11(2 #p2-_k_ ) (A._2)

_-=

0 0 0 0 0

--0_ 1 [dsUk+l+d_vk_'l+dgWk*l] ds da _k+ dQk"_" 2 Pk.4-t Olk.._ " I 0

Au_ a_+ ½ o- _+_ p_+, %+½p_+, %+_p_+, p,+_

' _,+, a,+½ _*+, a,+½ _*+* a_+½ _*+*

n$,l n5,2 n5,3 n.5,4 d2$aQ _ [k+l

-do, at _-A'-t2"+ (pk I_-+t + pk I._+l) oe_ 0 0 0 0
" Pk+l Op

-d2_ a( _ 0 0 0 0
Pt,,+t

o 0

o o

0 0

0 0

OT
d_ctQ-g-_ I_-+t 0

0 d_ _ o-_

A.13)

Here
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OT [d3U .+l w2

+2ds uk÷lvk+l + 2d9 uk+twk+l + 2d17 vk+lwk+l]
Pk+l Pk+l Pk+l J

n5,2 = 26aQ-5_pu Ik+l + ak+_ t Pk+l Pk+x Pk+x.l

OT [d14Vk+x d6Uk+__.__L+ dtTWk+_._.!]
n5,3 = d2saq_pv Ik+l + ak+_ k _ + Pk+l Pk+lJ

OT d24 wk+l + _o-- + dr7 vk+ln5,4 ----d25aQO- _ I_+i+ ak+_ Pk+l Pk+i Pk+lJ

The Jacobians are evaluated at the cell faces using the conservative variables in the

neighboring cells.

The Jacobian matrix O was not obtained by differentiating source terms with respect

to conservative variables. Instead, it was evaluated as follows:

A(Sov_rc_T_rms) )

O= 0 0 0 0 0 a(pk) 0

A {So_trceTerms_
0 0 0 0 0 0 A(_.)

The resulting matrix is:

(A.14)

ooooo o )
O = (A.15)

0 0 0 0 0 0 c,_l_.__
k

Such approach was previously employed in the CRAFT code with the Chien's k- e

model. Contribution from Production terms is neglected. Only diagonal elements axe

used to enchance diagonal dominance.
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Appendix B

Tabular Form of the Low Reynolds Number Correction

for f,

The following are the partial results found by Knight for the computation of f. versus

a, [6].

Rt

0.0

0.22891E-06

0.29723E-05

0.17282E-04

0.69491E-04

0.031481

0.03i4s_
0.031481

0.031481

0.031481

Rt

0.i1572E-07

0.62229E-06

0.56618E-05

0.28333E-04

0.10495E-03

f.
0.031481

0.031481

0.031481

0.031481

Rt

0.65107E-07

0.14382E-05

0.10136E-04

0.44974E-04

0.15544E-03

0.031481

0.031481

0.031481

0.031481

0.031481 0.031481

0.22637E-03 0.031481 0.32485E-03 0.031481 0.46016E-03 0.031481

0.64444E-03 0.031481 0.89336E-03 0.031481 0.12272E-02 0.031481

0.031481 0.22617E-02 0.031481 0.30388E-02 0.031481

0.031481 0.53898E-02 0.031481 0.71224E-02 0.031481

0.031481 0.12271E-01 0.031481 0.16010E-01 0.031481

0.031481 0.26968E-01' 0.031481 0.34833E-01 0.031481

0.031481 0.57624E-01 0.031481 0.73828E-01 0.031481

0.031481 0.12034E÷00 0.031481 0.15313E÷00 0.031481

0.031481 0.24645E+00 0.031481 0.31175E+00 0.031481

0.031481 0.49603E÷00 0.031481 0.62395E÷00 0.031481

0.031481 0.98173E+00 0.031481 0.12279E÷01 0.031481

0.031481 1.9092 0.031481 2.3729 0.031481

0.031481 3.6394 0.031481 4.4897 0.031481

0.031481 6.7728 0.031481 8.2783 0.031481

0.031481 12.233 0.031481 14.781 0.031481

0.031481 21.293 0.031481 25.369 0.031481

0.031481 35.439 0.031481 41.529 0.031481

0.031633 55.991 0.031972 64.394 0.032508

0.033258 83.491 0.034240 94.107 0.035475

0.036988 I17.13 0.038812 129.35 0.040981

0.16722E-02

0.40582E-02

0.93687E-02

0.20814E-01

0.44863E-01

0.94362E-01

0.19446E÷00

0.39360E+00

0.78339E÷00

1.5327

2.9424

5.5228

10.083

17.782

30.068

48.372

73.570

105.35

Table B.I: Tabular Form of f, vs. Ret
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f. Z. Rt ].
141.89 0.043536 154.64 0.046524 167.49 0.049999

180.31 0.054020 193.02 0.058652 205.53 0.063969

217.78 0.070048 229.74 0.076975 241.37 0.084840

252.68 0.093735 263.67 0.103757 274.37 0.115004

284.80 0.127571 295.00 0.141547 305.00 0.157011

314.84 0.174022 324.53 0.192609 334.12 0.212758

343.62 0.234389 353.05 0.257334 362.44 0.281294

371.81 0.305798 381.20 0.330134 390.66 0.353272

399.79 0.372845 408.68 0.387696 417.44 0.397520

426.14 0.406392 434.79 0.414960 443.39 0.423240

451.95 0.431248 460.46 0.439000 468.93 0.446509

477.36 0.453786 485.76 0.460845 494.12 0.467695

502.46 0.474347 510.76 0.480810 519.04 0.487093

527.29 0.493203 535.51 0.499150 543.71 0.504939

551.88 0.510578 560.03 0.516072 568.17 0.521429

576.28 0.526653 584.37 0.531750 592.44 0.536724

600.50 0.541582 608.53 0.546326 616.55 0.550962

624.56 0.555493 632.55 0.559923 640.52 0.564256

648.48 0.568495 656.42 0.572644 664.35 0.576705

672.27 0.580682 680.18 0.584577 688.07 0.588393

695.95 0.592133 703.82 0.595800 711.68 0.599394

719.52 0.602920 727.36 0.606378 735.18 0.609772

743.00 0.613102 750.80 0.616371 758.60 0.619581

766.39 0.622733 774.16 0.625829 781.93 0.628871

789.69 0.631860 797.44 0.634798 805.18 0.637686

812.92 0.640525 820.64 0.643317 828.36 0.646063

836.07 0.648764 843.77 0.651422 851.47 0.654037

859.16 0.656610 866.84 0.659144 874.51 0.661638

882.18 0.664094 889.84 0.666513 897.50 0.668895

905.14 0.671241 912.79 0.673553 920.42 0.675831

928.05 0.678076 935.68 0.680288 943.29 0.682469

950.91 0.684619 958.51 0.686739 966.11 0.688830

973.71 0.690892 981.30 0.692925 988.89 0.694931

996.47 0.696910 1004.04 0.698863 1011.61 0.700790

1019.18 0.702692 1026.74 0.704569 1034.29 0.706422

1041.84 0.708251 1049.39 0.710057 1056.93 0.711840

1064.47 0.713601 1072.00 0.715340 1079.53 0.717058

1087.05 0.718755 1094.57 0.720431 1102.09 0.722087

1109.60 0.723723 1117.11 0.725340 1124.61 0.726938

1132.11 0.728517 1139.61 0.730078 1147.10 0.731621

Table B.2: Tabular Form of f_, vs. Ret (Continued)
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at f,, ]. ].
1154.59 0.733147 1162.0_; 0.734655 1169.56 0.736146

1177.03 0.737621 1184.51 0.739079 1191.98 0.740521

1199.44 0.741947 1206.91 0.743358 1214.37 0.744753

1221.82 0.746134 1229.27 0.747499 1236.72 0.748851

1244.17 0.750188 1251.61 0.751511 1259.05 0.752820

1266.49 0.754116 1273.92 0.755399 1281.36 0.756668

1288.78 0.757925 1296.21 0.759169 1303.63 0.760401

1311.05 0'.761620 1318.46 0.762827 1325.88 0.764023

1333.29 0.765206 1340,69 0.766379 1348.10 0.767540

1355.50 0.768690 1362.90 0.769829 1370.30 0.770957

1377,69 0.772074 1385,08 0,773182 1392,47 '0.774278

1399.85 0.775365 1407.24 0.776442 1414.62 0.7_'7509

1422.00 0.778566 1429.37 0.779613 1436.74 0.780651

1444.12 0.781680 1451.48 0.782700 1458.85 0.783711

1466.21 0.784713 1473.57 0.785706 1480.93 0.786690

1488.29 0.787666 1495.64 (3.788634 1503.00 0.789593

1510.35 0.790544 1517.69 0.791487 1525.04 0.792422

1532.38 0.793350 1539.72 0.791269 1547.06 0.795181

1554.40 0.796086 1561.73 0.796983 1569.06 0.797872

1576.39 0.798755 1583.72 0.799630 1591.05 0.800499

1598.37 0'.801360 !i-1605.70 0.802215 1613.02 0.803062

1620.33 0.803903 1627.65 0.804738 1634.96 0.805566

1642.28 0.806387 1649.59 0.807203 1656,9"0 0.808012

1664.20 0.808814 1671.51 0.809611 1578.81 0.810402

1686.11 0.811186 1693.41 0.811965 '1700.71 '0.812738

1708.00 0.813505 1715.30 0.814267 1722.59 0.815023

1729.88 0:815773 1737.17 0.816518 1744.46 0.817257

1751.74 0.817992 1759.02 0.818720 1766.31 0.819444

1773.59 0.820163 1780.86 0.820876 1788.14 0.821584

1795.42 0.822288 1802.69 0.822986 1809.96 0.823680

1817.23 0.824368 1824.50 0.825052 1831.77 0.825731

1839.03

1860.82

1882.59

1904.35

1926.10

1947.83

1969.55

1991.25

2012.95

0.826406

0.828402

0.830359

0.832276

0.834156

0.836000

0.837808

0.839583

0.841324

1846.29

1868.08

1889.84

1911.60

1933.34

1955.07

1976.78

1998.49

2020.18

0.827076

0.829059

0.831002

0.832907

0.834775

0.836607

0.838403

6.840167

6.841897

1853.56

1875.33

1897.10

1918.85

1940.58

1962.31

1984.02

2005.72

2027.41

0.827742

0.829711

0.831641

0.833534

0.835389

0.837209

0.838995

0.840747

0.842467

Table B.3: Tabular Form of f. vs. Ret (Continued)
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2034.63 0.843033 2041.86 0.843596 2049.08 0.844155

2056.30 0.844711 2063.52 0.845263 2070.74 0.845813

2077.96 0.846359 2085.18 0.846901 2092.39 0.847441

2099.61 0.847977 2106.82 0.848510 2114.03 0.849040

2121.24 0.849567 2128.45 0.850091 2135.66 0.850612

2142.87 0.851129 2150.07 0.851644 2157.28 0.852156

2164.48 0.852665 2171.68 0.853171 2178.89 0.853674

2186.09 0.854174 2193.28 0.854672 2200.48 0.855i66

2207.68 0.855658 2214.87 0.856147 2222.07 0.856633

2229.26 0._57117 2236.45 0.857598 2243.64 0.858077

2250.83 0.858552 2258.02 0.859025 2265.21 0.859496

2272.39 0.859964 2279.58 0.860429 2286.76 0.860892

2293.94 0.861353 2301.12 0.861811 2308.31 0.862267

2315.48 0.862720 2322.66 0.863170 2329.84 0.863619

2337.02 0.864065 2344.19 0.864509 2351.37 0.864950

2358.54 0.865389 2365.71 0.865826 2372.88 0.866260

2380.05 0.866693 2387.22 0.867123 2394.39 0.867550

2401.55 0.867976 2408.72 0.868400 2415.88 0.868821

2423.05 0.869240 2430.21 0.869657 2437.37 0.870072

2444.53 0.870485 2451.69 0.870896 2458.85 0.871305

2466.01 0.871712 2473.17 0.872117 2480.32 0.872520

2487.48 0.872921 2494.63 0.873319 2501.78 0.873716

2508.94 0.874111 2M6.09 0.874505 2523.24 0.874896

2530.39 0.875285 2537.53 0.875673 2544.68 0.876058

2551.83 0.876442 2558.97 0.876824 2566.12 0.877204

2573.26 0.877582 2580.40 0.877959 2587.54 0.878334

2594.68 0.878707 2601.82 0.879078 2608.96 0.879448

2616.10 0.879815 2623.24 0.880181 2630.37 0.880546

2637.51 0.880909 2644.64 01881270 2651.78 0.881629

2658.91 0.881987 2666.04 0.882343 2673.17 0.882698

2680.30 0.883051 2687.43 0.883402 2694.56 0.883752

2701.69 0.884100 2708.82 0.884447 2715.94 0.884792

2723.07 0.885136 2730.19 0.885478 2737.31 0.885819

2744.44 0.886158 2751.56 0.886495 2758.68 0.886832

2765.80 0.887166 2772.92 0.887499 2780.04 0.887831

2787.15 0.888162 2794.27 0.888491 2801.39 0.888818

2808.50 0.889144 2815.61 0.889469 2822.73 0.889792

2829.84 0.890114 2836.95 0.890435 2844.06 0.890754

2851.17 0.891072 2858.28 0.891388 2865.39 0.891704

2872.50 0.892018 2879.61 0.892330 2886.71 0.892642

Table B.4: Tabular Form of f. vs. Re_ (Continued)
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2893.82 0.892952 2900.92 0.893260 2908.03 0.893568

29i5.13 0.893874 2922.23 0.894179 2929.33 0.894483

2936.43 0.894785 2943.53 0.895086 2950.63 0.895386

2957.73 0.895685 2964.83 0.895983 2971.93 0.896279

2979.02 0.89_574 2986.12 0.896868 2993.2i 0.897161

3000.31 0.89?453 3007.40 0.897744 3014.49 0.898033

3021.59 0.898321 3028.68 0.898608 3035.77 0.898894

3042.86 0.899179 3049.95 0.899463 3057.04 0.899746

3064.12 0.900027 3071.21 0.900308 3078.30 0.900587

3085.38 0.900865 3092.47 0.901143 3099.55 0.901419

3106.63 0.901694 3113.72 0.901968 3120.80 0.902241

3127.88 0.902513 3134.96 0.902784 3142.04 0.903054

3149.12 0.903323 3156.20 0:903591 3163.28 0.903858

3170.35 0.904124 3177.43 0.904388 3184.51 0.904652

3191.58 0.904915 3198.66 0.905177 3205.73 0.905438

3212.80 0.905698 3219.88 0.905957 3226.95 0.906216

3234.02 0.906473 3241.09 0.906729 3248.16 0.906984

3255.23 0.907239 3262.30 0.907492 3269.36 0.907745

3276.43 0.907997 3283.50 0.908247 3290.56 0.908497

3297.63 0:908746 3304.69 0.908994 3311.76 0.909241

3318.82 0.909488 3325.88 0.909733 3332.95 0.909978

3340.01 0.910222 3347.07 0.910464 3354.13 0.910706

3361.19 0.910948 3368.25 0.911188 3375.31 0.911427

3382.36 0.911666 3389.42 0.911904 3396.48 0.912141

3403.53 0.912377 3410.59 0.912612 3417.64 0.912847

3424.70 0.913081 3431.75 0.913314 3438.80 0.913546

3445.86 0.913777 3452.91 0.914008 3459.96 0.914238

3467.01 0.914467 3474.06

3488.16

3509.30

3530.44

3551.57

3572.69

3593.81

3614.93

3636.04

3657.15

3678.25

3699.34

3720.44

0.915149

0.915825

0.916494

0.917156

0.917812

0.918462

0.919105

0.919742

0.920373

0.920998

0.921617

0.922230

3495.20

3516.34

3537.48

3558.61

3579.73

3600.85

3621.97

3643.08

3664.18

3685.28

3706.38

3727.46

0.914695

0.915375

0.916049

0.916715

0.917376

0.918029

0.918677

0.919318

0.919953

0.920582

0.921205

0.921822

0.922433

3481.11

3502.25

3523.39

3544.52

3565.65

3586.77

3607.89

3629.01

3650.11

3671.22

3692.31

3713.41

3734.49

0.914923

0.915600

0.916272

0.916936

0.917594

0.918246

0.918891

0.919530

0.920163

0.920790

0.921411

0.922026

0.922636

Table B.5: Tabular Form of f. vs. Ree (Continued)
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at 4, at f. Rt f.
3741.52 0.922838 3748.55 0.923039 3755.58 0.923239

3762.60 0.923440 3769.63 0.923639 3776.65 0.923838

3783.68 0.924036 3790.70 0.924234 3797.73 0.924430

3804.75 0.924627 3811.77 0.924823 3818.80 0.925018

3825.82 0.925212 3832.84 0.925406 3839.86 0.925600

3846.88 0.925793 3853.90 0.925985 3860.92 0.926177

3867.94 0.926368 3874.96 0.926558 3881.97 0.926748

3888.99 0.926938 3896.01 0.927127 3903.02 0.927315

3910.04 0.927503 3917.05 0.927690 3924.07 0.927877

3931.08 0.928063 3938.10 0.928248 3945.11 0.928433

3952.12 0.928618 3959.13 0.928802 3966.15 0.928985

3973.16 0.929168 3980.17 0.929351 3987.18 0.929532

3994.19 0.929714 4001.20 0.929894 4008.20 0.930075

4015.21 0.930254 4022.22 0.930434 4029.23 0.930612

4036.23 0.930791 4043.24 0.930968 4050.25 0.931146

4057.25 0.931322 4064.26 0.931499 4071.26 0.931674

4078.26 0.931849 4085.27 0.932024 4092.27 0.932198

4099.27 0.932372 4106.27 0.932545 4113.28 0.932718

4120.28 0.932891 4127.28 0.933062 4134.28 0.933234

4141.28 0.933405 4148.27 0.933575 4155.27 0.933745

4162.27 0.933914 4169.27 0.934084 4176.27 0.934252

4183.26 0.934420 4190.26 0.934588 4197.25 0.934755

4204.25 0.934922 4211.24 0.935088 4218.24 0.935254

4225.23 0.935419 4232.23 0.935584 4239.22 0.935749

4246.21 0.935913 4253.20 0.936076 4260.20 0.936239

4267.19 0.936402 4274.18 0.936564 4281.17 0.936726

4288.16 0.936888 4295.15 0.937049 4302.14 0.937209

4309.12 0.937369 4316.11 0.937529 4323.10 0.937688

4330.09 0.937847 4337.07 0.938006 4344.06 0.938164

4351.05 0.938322 4358.03 0.938479 4365.02 0.938636

4372.00 0.938792 4378.99 0.938948 4385.97 0.939104

4392.95 0.939259 4399.94 0.939414 4406.92 0.939568

4413.90 0.939722 4420.88 0.939876 4427.86 0.940029

4434.84 0.940182 4441.82 0.940334 4448.80 0.940486

4455.78

4476.72

0.940638

0.941091

4462.76

4483.70

0.940789

0.941241

4469.74

4490.67

0.940940

0.941391

4497.65 0.941540 4504.63 0.941689 4511.60 0.941838

4518.58 0.941986 4525.55 0.942134 4532.53 0.942281

4539.50 0.942428 4546.48 0.942575 4553.45 0.942722

4560.42 0.942868 4567.40 0.943013 4574.37 0.943159

Table B.6: Tabular Form of f. vs. Ret (Continued)
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y. f. f.
4581.34 0.943304 4588.31 0.943448 4595.28 0.943593

4602'.25 0.943736 4609.22 0.943880 4616.19 0.944023

4623.16 0.944166 4630.13 0.944309 4637.10 0.944451

4644.07 0.944593 4651.04 0.944734 4658.00 0.944875

4664.97 0.945016 4671.94 0.945156 4678.90 0.945296

4685.87 0.945436 4692.84 0.945576 4699.80 0.945715

4706.77 0.945854 4713.73 0.945992 4720.69 0.946130
4727.66 0.946268 4734.62 0.946405 4741.58 0.946542

4748.55 0.946679 4755.51 0.946816 4762.47 0.946952

4769.43 0.947088 4776.39 0.947223 4783.35 0.947358

4790.31 0.947493 4797.27 0.947628 4804.23 0.947762

4811.19 0.947896 4818.15 0.948030 4825.11 0.948163

4832.06 0.948296 4839.02 0.948429 4845.98 0.948561

4852.94 0.948693 4859.89 0.948825 4866.85 0.948956

4873.80 0.949087 4880.76 0.949218 4887.71 0.949349

4894.67 0.949479 4901.62 0.949609 4908.58 0.949739

4915.53 0.949868 4922.48 0.949997 4929.44 0.950126

4936.39 0.950254 4943.34 0.950383 4950.29 0.950511

4957.24 0.950638 4964.19 0.950766 4971.14 0.950893

4978.09 0.951019 4985.04 0.951146 4991.99 0.951272

4998.94 0.951398 5005.89 0.951524 5012.84 0.951649

5019.79 0.951774 5026.73 0.951899 5033.68 0.952023

5040.63 0.952147 5047.58 0.952271 5054.52 0.952395

5061.47 0.952518 5068.41 0.952642 5075.36 0.952764

5082.30 0.952887 5089.25 0.953009 5096.19 0.953131

5103.14 0.953253 5110.08 0.953375 5117.02 0.953496

5123.96 0.953617 5130.91 0.953738 5137.85 0.953858

5144.79 0.953978 5151.73 0.954098 5158.67 0.9542[8

5165.61 0.954337 5172.55 0.954456 5179.49 "0.954575

5186.43 0.954694 5193.37" 0.954812 5200.31 0.954931

5207.25 0.955048 5214.19 0.955166 5221.13 0.955283

5228.07 0.955401 5255.00 0.955517 5241.94 0.955634

5248.88 0.955750 5255.81 0.955867 5262.75 0.955982

5269.68 0.956098 5276.62 0.956214 5283.56 0.956329

5290.49 0.956444 5297.42 0.956558 5304.36 0.956673

5311.29 0.956787 5318.23 0.956901 5325.16 0.957015

5332.09 0.957128 5339.02 0.957241 5345.96 0.957354

5352.89 0.957467 5359.82 0.957580 5366.75 0.957692

5373.68 0.957804 5380.61 0.957916 5387.54 0.958027

5394.47 0.958139 5401.40 0.958250 5408.33 0.958361

Table B.7: Tabular Form of f. vs. /_et (Continued)
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R_ y. R_ f. Rt Y.
5415.26 0.958471 5422.19 0.958582 5429.12 0.958692

5436.05 0.958802 5442.97 0.958912 5449.90 0.959021

5456.83 0.959131 5463.75 0.959240 5470.68 0.959349

5477.61 0.959457 5484.53 0.959566 5491.46 0.959674

5498.38 0.959782 5505.31 0.959890 5512.23 0.959997

5519.16 0.960105 5526.08 0.960212 5533.01 0.960319

5539.93 0.960425 5546.85 0.960532 5553.78 0.960638

5560.70 0.960744 5567.62 0.960850 5574.54 0.960956

5581.46 0.961061 5588.39 0.961166 5595.31 0.961271

5602.23 0.961376 5609.15 0.961481 5616.07 0.961585

5622.99 0.961689 5629.91 0.961793 5636.83 0.961897

5643.75 0.962000 5650.66 0.962104 5657.58 0.962207

5664.50 0.962310 5671.42 0.962412 5678.34 0.962515

5685.25 0.962617 5692.17 0.962719 5699.09 0.962821

5706.00 0.962923 5712.92 0.963025 5719.84 0.963126

5726.75 0.963227 5733.67 0.963328 5740.58 0.963429

5747.50 0.963529 5754.41 0.963630 5761.33 0.963730

5768.24 0.963830 5775.15 0.963930 5782.07 0.964029

5788.98 0.964129 5795.89 0.964228 5802.81 0.964327

5809.72 0.964426 5816.63 0.964524 5823.54 0.964623

5830.45 0.964721 5837.36 0.964819 5844.28 0.964917

5851.19 0.965015 5858.10 0.965112 5865.01 0.965209

5871.92 0.965307 5878.83 0.965404 5885.74 0.965500

5892.64 0.965597 5899.55 0.965693 5906.46 0.965790

5913.37 0.965886 5920.28 0.965981 5927.19 0.966077

5934.09 0.966173 5941.00 0.966268 5947.91 0.966363

5954.81 0.966458 5961.72 0.966553 5968.63 0.966647

5975.53 0.966742 5982.44 0.966836 5989.34 0.966930

5996.25 0.967024 6003.15 0.967118 6010.06 0.967211

6016.96 0.967305 6023.87 0.967398 6030.77 0.967491

6037.67 0.967584 6044.58 0.967677 6051.48 0.967769

6058.38 0.967861 6065.28 0.967954 6072.19 0.968046

6079.09 0.968137 6085.99 0.968229 6092.89 0.968321

6099.79 0.968412 6106.69 0.968503 6113.60 0.968594

6120.50 0.968685 6127.40 0.968776 6134.30 0.968866

6141.20 0.968957 6148.10 0.969047 6155.00 0.969137

6161.89 0.969227 6168.79 0.969316 6175.69 0.969406

6182.59 0.969495 6189.49 0.969584 6196.39 0.969673

6203.28 0.969762 6210.18 01969851 6217.08 0.969940

6223.98 0.970028 6230.87 0.970116 6237.77 0.970204

Table B.8: Tabular Form of f_ vs. Ret (Continued)
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6244.67 0.970292 6251.56 0.970380 6258.46 0.970468

6265.35 0.970555 6272.25 0.970642 6279.14 0.970729

6286.04 0.970816 6292.93 0.970903 6299.83 0.970990

6306.72 0.971076 6313.61 0.971163 6320.51 0.971249

6327.40 0.971335 6334.29 0.971421 6341.19 0.971507

6348.08 0.971592 6354.97 0.971678 6361.87 0.971763

6368.76 0.971848 6375.65 0.971933 6382.54 0.972018

6389.43 0.972103 6396.32 0.972187 6403.21 0.972272

6410.11 0.972356 0.972440 6423.89 0.972524

6430.78

6451.45

0.972608

0.972859

6417.00

6437.67
6458.33

0.972692

0.972942

6444.56

6465.22

0.972775

0.973025

6472.11 0.973108 6479.00 0.973191 6485.89 0.973273

6492.78 0.973356 6499.67 0.973438 6506.55 0.973520

6513.44 0.973602 6520.33 0.973684 6527.22 0.973766

6534.10 0.973848 0.973929 6547.88 0.9740116540.99

6561.65

6582.30

0.974173 6568.53 0.974254

0.974416 6589.19 0.974496

6554.76 0.974092

6575.42 0.974335

6596.07 0.974577 6602.96 0.974657 6609.84 0.974737

6616.73 0.974817 6623.61 0.971897 6630.50 0.974977

6637.38 0.'975056 6644.26 0.975136 6651.15 0.975215

6658.03 0.975294 6664.91 0.975373 6671.80 0.975452

6678.68' 0.975531 6685.56 0.975610 6692.44 0.975688

6699.33 0.975766 6706.21 0.975845 6713.09 0.975923

6719.97 0.976001 6726.85 0.976079 6733.73 0.976156

6740.61 0.976234 6747.49 0.97'6311 6754.37 0.976389

6761.26 0.976466 6768.14 0.976543 6775.02 0.976620

6781.89 0.976697 6788.77 0.976773 6795.65 0.976850

6802.53 0.976926 6809.41 0.977003 6816.29 0.977079

6823.17 0.977155 6830.05 0.977231 6836.93 0.977307

6843.80 0.977382 6850.68 0.977458 6857.56 0.977533

6864.44 0.977609 6871.31 0.977684 6878.19 0.977759

6885.07 0.977834 6891.94 0.977909 6898.82 0.977983

6905.70 0.978058 6912.57 0.978132 6919.45 0.978207

6926.33 0.978281 6933.20 0.978355 6940.08 0.978429

6946.95 0.978502 6953.83 0.978576 6960.70 0.978650

6967.58 0.978723 6974.45 0.978797 6981.33 0.978870

6988.20 0.978943 6995.08 0.979016 7001.95 0.979089

7008.82 0.979161 701'5.70 0.979234 7022.57 0.979306

7029.44 0.979379 7036.32 0.979451 7043.19 0.979523

7050.06 0.979595 7056.93 0.979667 7063.81 0.979739

7070.68 0.979811 7077.55 0.979882 7084.42 0.979954

Table B.9: Tabular Form of f. vs. Ret (Continued)
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Re ]. R_ f. Re I.
7091.30 0.980025 7098.17 0.980096 7105.04 0.980167
7111.91 0.980238 7118.78 0.980309 7125.65 0.980380
7132.52 0.980450 0.980521 7146.26 0.980591
7153.13 0.980662

7139.39

7160.00 0.980732 7166.87 0.980802

0.9SlOll7173.74 0.980872 7180.61 0.980942 7187.48

7194.35 0.981081 7201.22 0.981151 7208.09 0.981220

0.981289 0.9813587214.96 7228.707221.83 0.981427

7235.57 0.981496 7242.43 0.981565 7249.30 0.981634

7256.17 0.981703 7263.04 0.981771 7269.91 0.981840

7276.77 0.981908 7283.64 0.981976 7290.51 0.982044

7297.38 0.982112 7304.24 0.982180 7311.11 0.982248

7317.98 0.982315 7324.84 0.982383 7331.71 0.982450

7338.58 0.982518 7345.44 0.982585 7352.31 0.982652

7359.17 0.982719 7366.04 0.982786 7372.91 0.982853

7379.77 0.982919 7386.64 0.982986 7393.50 0.983052

7400.37 0.983119 7407.23 0.983185 7414.10 0.983251

7420.96 0.983317 7427.83 0.983383 7434.69 0.983449

7441.55 0.983515 7448.42 0.983580 7455.28 0.983646

7462.15 0.983711 7469.01 0.983776 7475.87 0.983842

7482.74 0.983907 7489.60 0.983972 7496.46 0.984037

7503.33 0.984102 7510.19 0.984166 7517.05 0.984231

7523.91 0.984295 753'0.78 0.984360 7537.64 0.984424

7544.50 0.984488 7551.36 0.984552 7558.23 0.984616

7565.09 0.984680 7571.95 0.984744 7578.81 0.984808

7585.67 0.984871 7592.53 0.984935 7599.40 0.984998

7606.26 0.985062 76i3.12 0.985125 7619.98 0.985188

7626.84 0.985251 7633.70 0.985314 7640.56 0.985377

0.985439 0.985502

0.985689

7647.42

7668.00

7661.14

7681.72

7654.28

7674.860.985627

0.985565

0.985752

7688.58 0.985814 7695.44 0.985876 7702.30 0.985938

7709.16 0.986000 7716.02 0.986061 7722.88 0.986123

7729.74 0.986185 7736.60 0.986246 7743.46 0.986307

7750.32 0.986369 7757.17 0.986430 7764.03 0.986491

7770.89 0.986552 7777.75 0.986613 7784.61 0.986674

7791.47 0.986734 7798.32 0.986795 7805.18 0.986855

7812.04 0.986916 7818.90 0.986976 7825.76 0.987036

7832.61 0.987097 7839.47 0.987157 7846.33 0.987217

7853.19 0.987277 7860.04 0.987336 7866.90 0.987396

7873.76 0.987456 7880.61 0.987515 7887.47 0.987575

7894.33 0.987634 7901.18 0.987693 7908.04 0.987752

7928.617914.90 7921.750.987811 0.987870 0.987929

Table B.10: Tabular Form of f, vs. Ret (Continued)
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R, ]. f. R, 4,
7935.47 0.987988 7942.32 0.988047 7949.18 0.988105

7956.03 0.988164 7962.89 0.988222 7969.74 0.988280

7976.60 0.988339 7983.46 0.988397 7990.31 0.988455

7997.17 0.988513 8004.02 0.988571 8010.88 0.988629

8017.73 0.988686 8024.59 0.988744 8031.44 0.988801

8038.30 0.988859 8045.15 0.988916 8052.01 0.988974

8058.86 0.989031 8065.71 0.989088 8072.57 0.989145

8079.42 0.989202 8086.28 0.989259 8093.13 0.989315

8099.99 0.989372 8106.84 0.989429 8113.69 0.989485

8120.55 0.989541 8127.40 0.989598 8134.26 0.989654

8141.11 0.989710 8147.96 0.989766 8154.82 0.989822

8161.67 0.989878 8168.52 0.989934 8175.38 0.989990

8182.23 0.990045 8189.08 0.990101 8195.94 0.990156

8202.79 0.990212 8209.64 0.990267 8216.49 0.990322

8223.35 0.990377 8230.20 0.990432 8237.05 0.990487

8243.90 0.990542 8250.76 0.990597 8257.61 0.990652

8264.46 0.990706 8271.31 0.990761 8278.17 0.990815

8285.02 0.990870 8291.87 0.990924 8298.72 0.990978

8305.58 0.991032 8312.43 0.991086 8319.28 0.991140

8326.13 0.991194 8332.98 0.991248 8339.83 0.991302

8346.69 0.991355 8353.54 0.991409 8360.39 0.991462

8367.24 0.991516 8374.09 0.991569 8380.94 0.991622

8387.79 0.991676 8394.65 0.991729 8401.50 0.991782

8408.35 0.991835 8415.20 0.991887 8422.05 0.991940

8428.90 0.991993 8435.75 0.992045 8442.60 0.992098

8449.45 0.992150 8456.30 0.992203 8463.16 0.992255

8470.01 0.992307 8476.86 0.992359 8483.71 0.992411

8490.56 0.992463 8497.41 0.992515 8504.26 0.992567

8511.11 0.992619 8517.96 0.992670 8524.81 0.992722

8531.66 0.99'2774 8538.51 0.992825 8545.36 0.992876

8552.21 0.992928 8559.06 0.992979 8565.91 0.993030

8572.76 0.993081 8579.61 0.993132 8586.46 0.993183

8593.31 0.993234 8600.16 0.993284 8607.01 0.993335

8613.86 0.993385 8620.71 0.993436 8627.56 0.993486

8634.41 0.993537 8641.26 0.993587 8648.11 0.993637

8654.96 0.993687 8661.81 0.993737 8668.66 0.993787

8675.51 0.993837 8682.36 0.993887 8689.21 0.993937

8696.06 0.993986 8702.91 0.994036 8709.76 0.994085

8716.61 0.994135 8723.46 0.994184 8730.31 0.994234

8737.15 0.994283 8744.00 0.994332 8750.85 0.994381

8764.558757.70 0.994430 0.994479 8771.40 0.994528

Table B.11: Tabular Form of f. vs. Re_ (Continued)
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R, 4, e, f. R, f.
8778.25 0.994576 8785.10 0.994625 8791.95 0.994674

8798.80 0.994722 8805.65 0.994771 8812.50 0.994819

8819.35 0.994867 8826.19 0.994916 8833.04 0.994964

8839.89 0.995012 8846.74 0.995060 8853.59 0.995108

8860.44 0.995156 8867.29 0.995204 8874.14 0.995251

8880.99 0.995299 8887.84 0.995347 8894.68 0.995394

8901.53 0.995442 8908.38 0.995489 8915.23 0.995536

8922.08 0.995584 8928.93 0.995631 8935.78 0.995678
8942.63 0.995725 8949.48 0.995772 8956.33 0.995819

8963.17 0.995865 8970.0i 0.995912 8976.87 0.995959

8983.72 0.996005 8990.57 0.996052 8997.42 0.996098

9004.27 '0.996145 9011.12 0.996191 9617.97 0.996237

9024.81 0.996283 9031.66 0.996330 9038.51 0.996376
9045.36 0.996422 9052.21 0.996467 9059.06 0.996513

9065.91 0.996559 9072.76 0.996605 9079.61 0.996650

9086.46 0.996696 9093.30 0.996741 9100.15 0.996787

9107.00 0.996832 9113.85 0.996877 9120.70 0.996922

9127.55 0.996968 9134.40 0.997013 9141.25 0.997058

9148.10 0.997103 9154.95 0.997147 9161.79 0.997192

9168.64 0.997237 9175.49 0.997282 9182.34 0(997326

9189.19 0.997371 9196.04 0.997415 9202.89 0.997459

9209.74 0.997504 9216.59 0.997548 9223.44 0.997592

9230.29 0.997636 9237.14 0.997680 9243.99 0.997724

9250.83 0.997768 9257.68 0.997812 9264.53 0.997856

9271.38 0.997899 9278.23 0.997943 9285.08 0.997987

9291.93 0.998030 9298.78 0.998073 9305.63 0.998117

9312.48 0.998160 9319.33 0.998203 9326.18 0.998247

9333.03 0.998290 9339.88 0.998333 9346.73 0.998376

9353.58 0.998418 9360.43 0.998461 9367.28 0.998504

9374.13 0.998547 9380.98 0.998589 9387.83 0.998632

9394.68 0.998674 9401.53 0.998717 9408.38 0.998759

9415.23 0.998802 9422.08 0.998844 9428.93 0.998886

9435.78 0.998928 9442.63 0.998970 9449.48 0.999012

9456.33 0.999054 9463.18 0.999096 9470.03 0.999138

9476.88 0.999179 9483.73 0.999221 9490.58 0.999263

9497.43 0.999304 9504.28 0.999345 9511.13 0.999387

9517.98 0.999428 9524.83 6.999469 9531.68 0.999511

9538.54 0.999552 9545.39 0.999593 9552.24 0.999634

9559.09 0.999675 9565.94 0.999716 9572.79 0.999756

9579.64 0.999797 0.999838 9593.34 0.999879

9600.20 0.999919

9586.49

9613.90 1.000000 1.000000

Table B.12: Tabular Form of f. vs. Ret (Continued)
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Appendix C

Eigenvectors

The sets of left and right eigenvectors in the way they are used in the CRAFT code

[37] are presented here.

The eigenvMues are

A = diag(U 4- C,U - C,U, U,U,U,U)

where U = lzu 4- lyv 4- l_w, C = c¢l_ 4- l_ 4- l_.

The left eigenvectors are:

(c.1)

L

(7-1)(1C-h)+c(c-_7) -u(7-1)+c/_ -v(7-1)+cl_ -w(T-1)÷c_ 7-i 0 0

(3"- 1)(lC-h)+c(c+U) -u(7- 1)-cl_ -v(_f- 1)-cly -w(7- 1)-c_ 7-1 0 0

/C - h -u -v -w 1 0 0

-V P_ Py p= 0 0 0

--I_ qz q_ q= 0 0 {}

-kO 0 0 0 1 0

--¢ 0 0 0 0 0 1

The right eigenvectors are:

C.2)

1 1
_ _/_! 0 0 0 0

2c 2 -- c o

2c:_

o o_ . P. q.

C" C2 C"

k k2_"-_-' 0 0 1 0

_ -(_-l)e
2c_ _ _ 0 0 0 1

C"

(c.3)
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wherecisthespeedofsound, K:_-"2_-'J'* ,,F- _f l:u+l;v+l:w,2 , = = P_:u+Puv+pzw,

I;V = q_u + quv + qzw, [ is the unit cell normal and p = (p_,pu,p.) T, q = (qx,q,j,q_)T

are two arbitrary unit vectors perpendicular to each other and vector i.
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